IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v47y2020i7p1219-1236.html
   My bibliography  Save this article

Measuring pedestrian volume by land use mix: Presenting a new entropy-based index by weighting walking generation units

Author

Listed:
  • Ha Na Im

    (The Seoul Institute, Republic of Korea)

  • Chang Gyu Choi

Abstract

This study proposes an alternative to the conventional entropy-based land use mix index, which is generally used to measure the diversity of land use. Pedestrian volume was selected as the dependent variable as it represents the vitality of districts, which many recent urban studies now consider important. The study investigates an entropy-based weighted land use mix index, which is weighted by different land use types. For the index, different areas are needed to generate a unit of pedestrian volume, whose measure is m 2 /person/day. The study demonstrates that this alternative is more effective than the existing conventionally used entropy-based land use mix index for explaining pedestrian volume. The research confirms that the conventionally used entropy-based land use mix index can have a positive or negative impact depending on the land use characteristics of the survey points because the conventionally used entropy-based land use mix index has a non-linear relationship with pedestrian volume. By analysing 9727 surveyed locations of pedestrian volume in Seoul, Korea, the study demonstrates that the weighted land use mix index, rather than the conventionally used entropy-based land use mix index, can improve the explanatory power of the estimation model for the relationship between pedestrian volume and built environments, showing consistent results throughout the empirical analysis. In future built-environment studies, the utility of the weighted land use mix index is expected to improve if studies include how to find the accurate weighting of the land use in estimating the pedestrian volume.

Suggested Citation

  • Ha Na Im & Chang Gyu Choi, 2020. "Measuring pedestrian volume by land use mix: Presenting a new entropy-based index by weighting walking generation units," Environment and Planning B, , vol. 47(7), pages 1219-1236, September.
  • Handle: RePEc:sae:envirb:v:47:y:2020:i:7:p:1219-1236
    DOI: 10.1177/2399808318824112
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/2399808318824112
    Download Restriction: no

    File URL: https://libkey.io/10.1177/2399808318824112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Seongman Jang & Youngsoo An & Changhyo Yi & Seungil Lee, 2017. "Assessing the spatial equity of Seoul’s public transportation using the Gini coefficient based on its accessibility," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(1), pages 91-107, January.
    3. Cervero, R. & Duncan, M., 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1478-1483.
    4. Ha Na Im & Chang Gyu Choi, 2019. "The hidden side of the entropy-based land-use mix index: Clarifying the relationship between pedestrian volume and land-use mix," Urban Studies, Urban Studies Journal Limited, vol. 56(9), pages 1865-1881, July.
    5. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.
    6. Jan Ritsema van Eck & Eric Koomen, 2008. "Characterising urban concentration and land-use diversity in simulations of future land use," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 123-140, March.
    7. Cervero, Robert & Duncan, Michael, 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," University of California Transportation Center, Working Papers qt6zr1x95m, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eun Yeong Seong & Youngjae Lim & Chang Gyu Choi, 2022. "Why are convenience stores clustered? The reasons behind the clustering of similar shops and the effect of increased competition," Environment and Planning B, , vol. 49(3), pages 834-846, March.
    2. Seong, Eun Yeong & Kim, Hyung Min & Kang, Jingu & Choi, Chang Gyu, 2023. "Developing pedestrian cities: The contribution of land readjustment projects to street vitality in Seoul, South Korea," Land Use Policy, Elsevier, vol. 131(C).
    3. Motieyan, Hamid & Azmoodeh, Mohammad, 2021. "Mixed-use distribution index: A novel bilevel measure to address urban land-use mix pattern (A case study in Tehran, Iran)," Land Use Policy, Elsevier, vol. 109(C).
    4. Zhehao Zhang & Thomas Fisher & Haiming Wang, 2023. "Walk Score, Environmental Quality and Walking in a Campus Setting," Land, MDPI, vol. 12(4), pages 1-19, March.
    5. Alessia Iannillo & Isidoro Fasolino, 2021. "Land-Use Mix and Urban Sustainability: Benefits and Indicators Analysis," Sustainability, MDPI, vol. 13(23), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    2. Ha Na Im & Chang Gyu Choi, 2019. "The hidden side of the entropy-based land-use mix index: Clarifying the relationship between pedestrian volume and land-use mix," Urban Studies, Urban Studies Journal Limited, vol. 56(9), pages 1865-1881, July.
    3. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Alireza Sahebgharani & Szymon Wiśniewski, 2022. "Spatiotemporal Changeability of the Load of the Urban Road Transport System under Permanent and Short-Term Legal and Administrative Retail Restrictions," Sustainability, MDPI, vol. 14(9), pages 1-30, April.
    4. Yuefei Zhuo & Xin Jing & Xiaoying Wang & Guan Li & Zhongguo Xu & Yang Chen & Xueqi Wang, 2022. "The Rise and Fall of Land Use Mix: Review and Prospects," Land, MDPI, vol. 11(12), pages 1-21, December.
    5. Zhao, Chunli & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Meng, Xiaoying, 2018. "Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing," Transport Policy, Elsevier, vol. 64(C), pages 102-112.
    6. Emine Coruh & Faruk Urak & Abdulbaki Bilgic & Steven T. Yen, 2022. "The role of household demographic factors in shaping transportation spending in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3485-3517, March.
    7. Regine Gerike & Caroline Koszowski & Bettina Schröter & Ralph Buehler & Paul Schepers & Johannes Weber & Rico Wittwer & Peter Jones, 2021. "Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    8. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    9. Steven R Gehrke & Kelly J Clifton, 2019. "An activity-related land use mix construct and its connection to pedestrian travel," Environment and Planning B, , vol. 46(1), pages 9-26, January.
    10. Wang, Donggen & Lin, Tao, 2013. "Built environments, social environments, and activity-travel behavior: a case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 31(C), pages 286-295.
    11. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    12. Millward, Hugh & Spinney, Jamie & Scott, Darren, 2013. "Active-transport walking behavior: destinations, durations, distances," Journal of Transport Geography, Elsevier, vol. 28(C), pages 101-110.
    13. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    14. Neves, Carlos Eduardo Teixeira & da Silva, Alan Ricardo & Arruda, Fabiana Serra de, 2021. "Exploring the link between built environment and walking choice in São Paulo city, Brazil," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Senes, Giulio & Rovelli, Roberto & Bertoni, Danilo & Arata, Laura & Fumagalli, Natalia & Toccolini, Alessandro, 2017. "Factors influencing greenways use: Definition of a method for estimation in the Italian context," Journal of Transport Geography, Elsevier, vol. 65(C), pages 175-187.
    16. Biggar, Matt & Ardoin, Nicole M., 2017. "Community context, human needs, and transportation choices: A view across San Francisco Bay Area communities," Journal of Transport Geography, Elsevier, vol. 60(C), pages 189-199.
    17. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    18. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    19. Pengjun Zhao, 2014. "The Impact of the Built Environment on Bicycle Commuting: Evidence from Beijing," Urban Studies, Urban Studies Journal Limited, vol. 51(5), pages 1019-1037, April.
    20. Ann Forsyth & Mary Hearst & J. Michael Oakes & Kathryn H. Schmitz, 2008. "Design and Destinations: Factors Influencing Walking and Total Physical Activity," Urban Studies, Urban Studies Journal Limited, vol. 45(9), pages 1973-1996, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:47:y:2020:i:7:p:1219-1236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.