IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v44y2017i4p647-667.html
   My bibliography  Save this article

The spatial configuration of urban crime environments and statistical modeling

Author

Listed:
  • Enrico di Bella
  • Matteo Corsi
  • Lucia Leporatti
  • Luca Persico

Abstract

The aim of this paper is to discuss the representation of space in statistical models of urban crime. We argue that some important information represented by the properties of space is either lost or hardly interpretable if those properties are not explicitly introduced in the model as regressors. We illustrate the issue commenting on the shortcomings of the two standard approaches to modeling the dispersion of crime in a city: using local attributes of places as regressors, and defining a catch-all spatial component to neutralize the effect of latent spatial factors from the model. As an alternative to the current methods, the metrics of spatial configuration, including those devised by the technique called Space Syntax Analysis, provide useful variables that can be introduced as regressors. Such regressors offer interpretable information on space, behavior, and their interactions, that would otherwise be lost. We therefore consider a set of three configurational variables that represent different forms of centrality and that are thought to have influence on a wide range of human activities. We propose an innovative procedure to adapt these variables to most urban graphs and then, using data from a large area in the city of Genoa (Italy), we show that the three variables are well defined, consistent, noncollinear indicators, with evident spatial meanings. Then we build two sets of Hierarchical Bayesian count models of different urban crime types (“property crime†and “arson and criminal damage†) around some known covariates of crime and we show that the overall quality of the models is improved (with the size of improvement depending on the type of crime) when the three configurational variables are included. Furthermore, we show that what the three variables explain of the overall variability of crime is a sizeable part of what would be the spatial error term of a traditional spatial model of urban crime. While the configurational variables alone cannot provide a goodness of fit as high as the one obtained with a generic spatial term, they have a relevant role for the interpretation of the results, which is ultimately the objective of urban crime modeling.

Suggested Citation

  • Enrico di Bella & Matteo Corsi & Lucia Leporatti & Luca Persico, 2017. "The spatial configuration of urban crime environments and statistical modeling," Environment and Planning B, , vol. 44(4), pages 647-667, July.
  • Handle: RePEc:sae:envirb:v:44:y:2017:i:4:p:647-667
    DOI: 10.1177/0265813515624686
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0265813515624686
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0265813515624686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Enrico di Bella & Matteo Corsi & Lucia Leporatti, 2015. "A Multi-indicator Approach for Smart Security Policy Making," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 122(3), pages 653-675, July.
    2. Wim Bernasco & Richard Block & Stijn Ruiter, 2013. "Go where the money is: modeling street robbers' location choices," Journal of Economic Geography, Oxford University Press, vol. 13(1), pages 119-143, January.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Enrico Bella & Francesca Odone & Matteo Corsi & Alberto Sillitti & Ruth Breu, 2014. "Smart Security: Integrated Systems for Security Policies in Urban Environments," Progress in IS, in: Renata Paola Dameri & Camille Rosenthal-Sabroux (ed.), Smart City, edition 127, pages 193-219, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yicheng Tang & Xinyan Zhu & Wei Guo & Xinyue Ye & Tao Hu & Yaxin Fan & Faming Zhang, 2017. "Non-Homogeneous Diffusion of Residential Crime in Urban China," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    2. Shino Shiode & Narushige Shiode, 2022. "Network-Based Space-Time Scan Statistics for Detecting Micro-Scale Hotspots," Sustainability, MDPI, vol. 14(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    3. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    4. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    5. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    6. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    7. Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
    8. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    9. Radka Jersakova & James Lomax & James Hetherington & Brieuc Lehmann & George Nicholson & Mark Briers & Chris Holmes, 2022. "Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 834-860, August.
    10. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    11. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    12. Faustin Habyarimana & Temesgen Zewotir & Shaun Ramroop, 2017. "Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda," IJERPH, MDPI, vol. 14(6), pages 1-15, June.
    13. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    14. Matthew Yap & Matthew Tuson & Berwin Turlach & Bryan Boruff & David Whyatt, 2021. "Modelling the Relationship between Rainfall and Mental Health Using Different Spatial and Temporal Units," IJERPH, MDPI, vol. 18(3), pages 1-15, February.
    15. Mayer, Duncan J., 2024. "Lead and delinquency rates; A spatio-temporal perspective," Social Science & Medicine, Elsevier, vol. 341(C).
    16. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    17. Yang, Anni & Liu, Chenhui & Yang, Di & Lu, Chaoru, 2023. "Electric vehicle adoption in a mature market: A case study of Norway," Journal of Transport Geography, Elsevier, vol. 106(C).
    18. Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
    19. Javier Cortes-Ramirez & Darren Wraith & Peter D. Sly & Paul Jagals, 2022. "Mapping the Morbidity Risk Associated with Coal Mining in Queensland, Australia," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    20. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:44:y:2017:i:4:p:647-667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.