IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0202832.html
   My bibliography  Save this article

Spatiotemporal diffusion of influenza A (H1N1): Starting point and risk factors

Author

Listed:
  • Ana Carolina Carioca da Costa
  • Cláudia Torres Codeço
  • Elias Teixeira Krainski
  • Marcelo Ferreira da Costa Gomes
  • Aline Araújo Nobre

Abstract

Influenza constitutes a major challenge to world health authorities due to high transmissibility and the capacity to generate large epidemics. This study aimed to characterize the diffusion process of influenza A (H1N1) by identifying the starting point of the epidemic as well as climatic and sociodemographic factors associated with the occurrence and intensity of transmission of the disease. The study was carried out in the Brazilian state of Paraná, where H1N1 caused the largest impact. The units of spatial and temporal analysis were the municipality of residence of the cases and the epidemiological weeks of the year 2009, respectively. Under the Bayesian paradigm, parametric inference was performed through a two-part spatiotemporal model and the integrated nested Laplace approximation (INLA) algorithm. We identified the most likely starting points through the effective distance measure based on mobility networks. The proposed estimation methodology allowed for rapid and efficient implementation of the spatiotemporal model, and provided evidence of different patterns for chance of occurrence and risk of influenza throughout the epidemiological weeks. The results indicate the capital city of Curitiba as the probable starting point, and showed that the interventions that focus on municipalities with greater migration and density of people, especially those with higher Human Development Indexes (HDIs) and the presence of municipal air and road transport, could play an important role in mitigation of effects of future influenza pandemics on public health. These results provide important information on the process of introduction and spread of influenza, and could contribute to the identification of priority areas for surveillance as well as establishment of strategic measures for disease prevention and control. The proposed model also allows identification of epidemiological weeks with high chance of influenza occurrence, which can be used as a reference criterion for creating an immunization campaign schedule.

Suggested Citation

  • Ana Carolina Carioca da Costa & Cláudia Torres Codeço & Elias Teixeira Krainski & Marcelo Ferreira da Costa Gomes & Aline Araújo Nobre, 2018. "Spatiotemporal diffusion of influenza A (H1N1): Starting point and risk factors," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
  • Handle: RePEc:plo:pone00:0202832
    DOI: 10.1371/journal.pone.0202832
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202832
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0202832&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0202832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    2. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Pastore Y Piontti, Ana & Gomes, Marcelo Ferreira Da Costa & Samay, Nicole & Perra, Nicola & Vespignani, Alessandro, 2014. "The infection tree of global epidemics," Network Science, Cambridge University Press, vol. 2(1), pages 132-137, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    3. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    4. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    5. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    6. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    7. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    8. Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
    9. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    10. Radka Jersakova & James Lomax & James Hetherington & Brieuc Lehmann & George Nicholson & Mark Briers & Chris Holmes, 2022. "Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 834-860, August.
    11. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    12. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    13. Faustin Habyarimana & Temesgen Zewotir & Shaun Ramroop, 2017. "Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda," IJERPH, MDPI, vol. 14(6), pages 1-15, June.
    14. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    15. Matthew Yap & Matthew Tuson & Berwin Turlach & Bryan Boruff & David Whyatt, 2021. "Modelling the Relationship between Rainfall and Mental Health Using Different Spatial and Temporal Units," IJERPH, MDPI, vol. 18(3), pages 1-15, February.
    16. Mayer, Duncan J., 2024. "Lead and delinquency rates; A spatio-temporal perspective," Social Science & Medicine, Elsevier, vol. 341(C).
    17. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    18. Yang, Anni & Liu, Chenhui & Yang, Di & Lu, Chaoru, 2023. "Electric vehicle adoption in a mature market: A case study of Norway," Journal of Transport Geography, Elsevier, vol. 106(C).
    19. Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
    20. Javier Cortes-Ramirez & Darren Wraith & Peter D. Sly & Paul Jagals, 2022. "Mapping the Morbidity Risk Associated with Coal Mining in Queensland, Australia," IJERPH, MDPI, vol. 19(3), pages 1-14, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0202832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.