IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0202832.html
   My bibliography  Save this article

Spatiotemporal diffusion of influenza A (H1N1): Starting point and risk factors

Author

Listed:
  • Ana Carolina Carioca da Costa
  • Cláudia Torres Codeço
  • Elias Teixeira Krainski
  • Marcelo Ferreira da Costa Gomes
  • Aline Araújo Nobre

Abstract

Influenza constitutes a major challenge to world health authorities due to high transmissibility and the capacity to generate large epidemics. This study aimed to characterize the diffusion process of influenza A (H1N1) by identifying the starting point of the epidemic as well as climatic and sociodemographic factors associated with the occurrence and intensity of transmission of the disease. The study was carried out in the Brazilian state of Paraná, where H1N1 caused the largest impact. The units of spatial and temporal analysis were the municipality of residence of the cases and the epidemiological weeks of the year 2009, respectively. Under the Bayesian paradigm, parametric inference was performed through a two-part spatiotemporal model and the integrated nested Laplace approximation (INLA) algorithm. We identified the most likely starting points through the effective distance measure based on mobility networks. The proposed estimation methodology allowed for rapid and efficient implementation of the spatiotemporal model, and provided evidence of different patterns for chance of occurrence and risk of influenza throughout the epidemiological weeks. The results indicate the capital city of Curitiba as the probable starting point, and showed that the interventions that focus on municipalities with greater migration and density of people, especially those with higher Human Development Indexes (HDIs) and the presence of municipal air and road transport, could play an important role in mitigation of effects of future influenza pandemics on public health. These results provide important information on the process of introduction and spread of influenza, and could contribute to the identification of priority areas for surveillance as well as establishment of strategic measures for disease prevention and control. The proposed model also allows identification of epidemiological weeks with high chance of influenza occurrence, which can be used as a reference criterion for creating an immunization campaign schedule.

Suggested Citation

  • Ana Carolina Carioca da Costa & Cláudia Torres Codeço & Elias Teixeira Krainski & Marcelo Ferreira da Costa Gomes & Aline Araújo Nobre, 2018. "Spatiotemporal diffusion of influenza A (H1N1): Starting point and risk factors," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
  • Handle: RePEc:plo:pone00:0202832
    DOI: 10.1371/journal.pone.0202832
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0202832
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0202832&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0202832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    2. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Pastore Y Piontti, Ana & Gomes, Marcelo Ferreira Da Costa & Samay, Nicole & Perra, Nicola & Vespignani, Alessandro, 2014. "The infection tree of global epidemics," Network Science, Cambridge University Press, vol. 2(1), pages 132-137, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    2. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    3. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    4. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    5. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    6. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    7. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    8. Julien Riou & Anthony Hauser & Anna Fesser & Christian L. Althaus & Matthias Egger & Garyfallos Konstantinoudis, 2023. "Direct and indirect effects of the COVID-19 pandemic on mortality in Switzerland," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    10. Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
    11. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    12. Márcio Poletti Laurini, 2017. "A spatial error model with continuous random effects and an application to growth convergence," Journal of Geographical Systems, Springer, vol. 19(4), pages 371-398, October.
    13. Radka Jersakova & James Lomax & James Hetherington & Brieuc Lehmann & George Nicholson & Mark Briers & Chris Holmes, 2022. "Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 834-860, August.
    14. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    15. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    16. Luca Grassetti & Laura Rizzi, 2019. "The determinants of individual health care expenditures in the Italian region of Friuli Venezia Giulia: evidence from a hierarchical spatial model estimation," Empirical Economics, Springer, vol. 56(3), pages 987-1009, March.
    17. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    18. William Gonzalez Daza & Renata L. Muylaert & Thadeu Sobral-Souza & Victor Lemes Landeiro, 2023. "Malaria Risk Drivers in the Brazilian Amazon: Land Use—Land Cover Interactions and Biological Diversity," IJERPH, MDPI, vol. 20(15), pages 1-16, August.
    19. Jens Kandt & Shu-Sen Chang & Paul Yip & Ricky Burdett, 2017. "The spatial pattern of premature mortality in Hong Kong: How does it relate to public housing?," Urban Studies, Urban Studies Journal Limited, vol. 54(5), pages 1211-1234, April.
    20. Waterman, I. & Marek, L. & Ahuriri-Driscoll, A. & Mohammed, J. & Epton, M. & Hobbs, M., 2024. "Investigating the spatial and temporal variation of vape retailer provision in New Zealand: A cross-sectional and nationwide study," Social Science & Medicine, Elsevier, vol. 349(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0202832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.