IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35770-9.html
   My bibliography  Save this article

Direct and indirect effects of the COVID-19 pandemic on mortality in Switzerland

Author

Listed:
  • Julien Riou

    (University of Bern
    Federal Office of Public Health)

  • Anthony Hauser

    (University of Bern
    Federal Office of Public Health)

  • Anna Fesser

    (Federal Office of Public Health)

  • Christian L. Althaus

    (University of Bern)

  • Matthias Egger

    (University of Bern
    University of Bristol
    University of Cape Town)

  • Garyfallos Konstantinoudis

    (School of Public Health, Imperial College London)

Abstract

The direct and indirect impact of the COVID-19 pandemic on population-level mortality is of concern to public health but challenging to quantify. Using data for 2011–2019, we applied Bayesian models to predict the expected number of deaths in Switzerland and compared them with laboratory-confirmed COVID-19 deaths from February 2020 to April 2022 (study period). We estimated that COVID-19-related mortality was underestimated by a factor of 0.72 (95% credible interval [CrI]: 0.46–0.78). After accounting for COVID-19 deaths, the observed mortality was −4% (95% CrI: −8 to 0) lower than expected. The deficit in mortality was concentrated in age groups 40–59 (−12%, 95%CrI: −19 to −5) and 60–69 (−8%, 95%CrI: −15 to −2). Although COVID-19 control measures may have negative effects, after subtracting COVID-19 deaths, there were fewer deaths in Switzerland during the pandemic than expected, suggesting that any negative effects of control measures were offset by the positive effects. These results have important implications for the ongoing debate about the appropriateness of COVID-19 control measures.

Suggested Citation

  • Julien Riou & Anthony Hauser & Anna Fesser & Christian L. Althaus & Matthias Egger & Garyfallos Konstantinoudis, 2023. "Direct and indirect effects of the COVID-19 pandemic on mortality in Switzerland," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35770-9
    DOI: 10.1038/s41467-022-35770-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35770-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35770-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Hale & Noam Angrist & Rafael Goldszmidt & Beatriz Kira & Anna Petherick & Toby Phillips & Samuel Webster & Emily Cameron-Blake & Laura Hallas & Saptarshi Majumdar & Helen Tatlow, 2021. "A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)," Nature Human Behaviour, Nature, vol. 5(4), pages 529-538, April.
    2. Richard Van Noorden, 2022. "COVID death tolls: scientists acknowledge errors in WHO estimates," Nature, Nature, vol. 606(7913), pages 242-244, June.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Patrick Heuveline, 2021. "The COVID-19 pandemic adds another 200,000 deaths (50%) to the annual toll of excess mortality in the United States," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(36), pages 2107590118-, September.
    6. Giacomo De Nicola & Göran Kauermann & Michael Höhle, 2022. "On assessing excess mortality in Germany during the COVID-19 pandemic [Zur Berechnung der Übersterblichkeit in Deutschland während der COVID-19-Pandemie]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(1), pages 5-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikael Rostila & Agneta Cederström & Matthew Wallace & Siddartha Aradhya & Malin Ahrne & Sol P. Juárez, 2023. "Inequalities in COVID-19 severe morbidity and mortality by country of birth in Sweden," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    3. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    4. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    5. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    6. Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
    7. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    8. Radka Jersakova & James Lomax & James Hetherington & Brieuc Lehmann & George Nicholson & Mark Briers & Chris Holmes, 2022. "Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 834-860, August.
    9. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    10. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    11. Faustin Habyarimana & Temesgen Zewotir & Shaun Ramroop, 2017. "Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda," IJERPH, MDPI, vol. 14(6), pages 1-15, June.
    12. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    13. Matthew Yap & Matthew Tuson & Berwin Turlach & Bryan Boruff & David Whyatt, 2021. "Modelling the Relationship between Rainfall and Mental Health Using Different Spatial and Temporal Units," IJERPH, MDPI, vol. 18(3), pages 1-15, February.
    14. Mayer, Duncan J., 2024. "Lead and delinquency rates; A spatio-temporal perspective," Social Science & Medicine, Elsevier, vol. 341(C).
    15. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
    16. Yang, Anni & Liu, Chenhui & Yang, Di & Lu, Chaoru, 2023. "Electric vehicle adoption in a mature market: A case study of Norway," Journal of Transport Geography, Elsevier, vol. 106(C).
    17. Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
    18. Javier Cortes-Ramirez & Darren Wraith & Peter D. Sly & Paul Jagals, 2022. "Mapping the Morbidity Risk Associated with Coal Mining in Queensland, Australia," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    19. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    20. Panczak, Radoslaw & Moser, André & Held, Leonhard & Jones, Philip A. & Rühli, Frank J. & Staub, Kaspar, 2017. "A tall order: Small area mapping and modelling of adult height among Swiss male conscripts," Economics & Human Biology, Elsevier, vol. 26(C), pages 61-69.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35770-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.