IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v5y2003i2p161-184.html
   My bibliography  Save this article

Modelling spatially varying impacts of socioeconomic predictors on mortality outcomes

Author

Listed:
  • P. Congdon

Abstract

A methodology is proposed for modelling spatially varying predictor effects on a disease or mortality count outcome. The methodology may be extended to multivariate outcomes, so that one may assess the similarity of spatial patterning of regression effects between outcomes. Another extension involves longitudinal data, where a number of modelling structures are possible. The methodology is illustrated by suicide mortality in 32 London Boroughs over the period 1979–1993, in terms of area deprivation and a measure of social fragmentation. Copyright Springer-Verlag Berlin Heidelberg 2003

Suggested Citation

  • P. Congdon, 2003. "Modelling spatially varying impacts of socioeconomic predictors on mortality outcomes," Journal of Geographical Systems, Springer, vol. 5(2), pages 161-184, August.
  • Handle: RePEc:kap:jgeosy:v:5:y:2003:i:2:p:161-184
    DOI: 10.1007/s10109-003-0099-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10109-003-0099-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-003-0099-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
    2. Yu, Danlin & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Li, Guangdong, 2021. "The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis," Land Use Policy, Elsevier, vol. 100(C).
    3. Marcia Castro, 2007. "Spatial Demography: An Opportunity to Improve Policy Making at Diverse Decision Levels," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(5), pages 477-509, December.
    4. Rodrigues, Alexandre & Assunção, Renato, 2008. "Propriety of posterior in Bayesian space varying parameter models with normal data," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2408-2411, October.
    5. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    6. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    7. Matthew Quick, 2019. "Multiscale spatiotemporal patterns of crime: a Bayesian cross-classified multilevel modelling approach," Journal of Geographical Systems, Springer, vol. 21(3), pages 339-365, September.

    More about this item

    Keywords

    spatial heterogeneity; suicide; random effects; epidemiology; health resourcing; C21; C23; C25; C11; I12;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:5:y:2003:i:2:p:161-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.