IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v23y1991i10p1447-1458.html
   My bibliography  Save this article

The Relative Utility of the Central Postcode Directory and Pinpoint Address Code in Applications of Geographical Information Systems

Author

Listed:
  • A C Gatrell
  • C E Dunn
  • P J Boyle

Abstract

Considerable use is made of postcoded data in GIS (geographical information system) research. This is especially true of applications in geodemographics and epidemiology, but the work described here is of relevance in any attempt to attach specific locational identifiers to unit postcodes in Britain. Conventionally, unit postcodes are given an explicit spatial reference by means of the Central Postcode Directory (CPD), in which 100-metre grid references are assigned to each postcode. However, in a major undertaking, the company Pinpoint Analysis Ltd is digitising every property, both domestic and commercial, in the country. This gives a 1 metre grid reference for each such property; from the set of all addresses in a unit postcode a centroid may be obtained. In this paper the locational referencing provided by the ‘Pinpoint Address Code’ is compared with that of the CPD. The empirical work draws on data for Camden in London, but reference is made to earlier work in Whitehaven. We make some observations on the value of using point data in GIS (notably epidemiological) research, rather than relying on data for essentially arbitrary areal units.

Suggested Citation

  • A C Gatrell & C E Dunn & P J Boyle, 1991. "The Relative Utility of the Central Postcode Directory and Pinpoint Address Code in Applications of Geographical Information Systems," Environment and Planning A, , vol. 23(10), pages 1447-1458, October.
  • Handle: RePEc:sae:envira:v:23:y:1991:i:10:p:1447-1458
    DOI: 10.1068/a231447
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a231447
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a231447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Diggle, 1990. "A Point Process Modelling Approach to Raised Incidence of a Rare Phenomenon in the Vicinity of a Prespecified Point," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 153(3), pages 349-362, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
    2. Martin L. Hazelton & Tilman M. Davies, 2022. "Pointwise comparison of two multivariate density functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1791-1810, December.
    3. Davies, Tilman M. & Jones, Khair & Hazelton, Martin L., 2016. "Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 12-28.
    4. Carl Schmertmann & Renato Assunção & Joseph Potter, 2010. "Knox meets Cox: Adapting epidemiological space-time statistics to demographic studies," Demography, Springer;Population Association of America (PAA), vol. 47(3), pages 629-650, August.
    5. Cucala, Lionel, 2009. "A flexible spatial scan test for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2843-2850, June.
    6. Dale L. Zimmerman, 2008. "Estimating the Intensity of a Spatial Point Process from Locations Coarsened by Incomplete Geocoding," Biometrics, The International Biometric Society, vol. 64(1), pages 262-270, March.
    7. Álvaro Briz‐Redón & Jorge Mateu & Francisco Montes, 2022. "Identifying crime generators and spatially overlapping high‐risk areas through a nonlinear model: A comparison between three cities of the Valencian region (Spain)," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 97-120, February.
    8. Ronald E. Gangnon & Murray K. Clayton, 2000. "Bayesian Detection and Modeling of Spatial Disease Clustering," Biometrics, The International Biometric Society, vol. 56(3), pages 922-935, September.
    9. Takuo Matsubara & Jeremias Knoblauch & François‐Xavier Briol & Chris J. Oates, 2022. "Robust generalised Bayesian inference for intractable likelihoods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 997-1022, July.
    10. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Fuqiang Dai & Hao Liu & Xia Zhang & Qing Li, 2021. "Exploring the Emerging Trends of Spatial Epidemiology: A Scientometric Analysis Based on CiteSpace," SAGE Open, , vol. 11(4), pages 21582440211, November.
    12. Peter J. Diggle & Barry S. Rowlingson, 1994. "A Conditional Approach to Point Process Modelling of Elevated Risk," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(3), pages 433-440, May.
    13. S P Kingham & A C Gatrell & B Rowlingson, 1995. "Testing for Clustering of Health Events within a Geographical Information System Framework," Environment and Planning A, , vol. 27(5), pages 809-821, May.
    14. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    15. Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
    16. Angela L. Riffo-Campos & Guillermo Ayala & Francisco Montes, 2021. "Gene Set Analysis Using Spatial Statistics," Mathematics, MDPI, vol. 9(5), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:23:y:1991:i:10:p:1447-1458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.