IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v10y1978i11p1273-1285.html
   My bibliography  Save this article

Toward More Realistic Allocation in Location—Allocation Models: An Interaction Approach

Author

Listed:
  • M J Hodgson

    (Department of Geography, The University of Alberta, Edmonton, Canada T6G 2H4)

Abstract

Location—allocation models jointly specify the optimal locations of service facilities and the allocation of patrons to them. Almost without exception, the allocation rule employed in these models has assumed that patrons wish to use the facility at the least travel cost away from them. Spatial interaction theory suggests that a person's travel behaviour is influenced by many other factors, among them differential facility attractiveness and uncertainty about travel costs, and that the least-cost allocation rule is unrealistic. This paper presents a location—allocation model employing an entropy-maximizing interaction model to allocate patrons to facilities. A heuristic solution procedure is proposed and found to be effective and reasonably efficient for small problems. Insofar as travel behaviour in the system is suboptimal, the location—allocation model produces suboptimal solutions. In the interests of providing realistic solutions to real-world problems, however, it is essential that planners accommodate the behaviour of those they plan for, be it normative or not.

Suggested Citation

  • M J Hodgson, 1978. "Toward More Realistic Allocation in Location—Allocation Models: An Interaction Approach," Environment and Planning A, , vol. 10(11), pages 1273-1285, November.
  • Handle: RePEc:sae:envira:v:10:y:1978:i:11:p:1273-1285
    DOI: 10.1068/a101273
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a101273
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a101273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. CORNUEJOLS, Gérard & FISHER, Marshall L. & NEMHAUSER, George L., 1977. "Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms," LIDAM Reprints CORE 292, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. William J. Abernathy & John C. Hershey, 1972. "A Spatial-Allocation Model for Regional Health-Services Planning," Operations Research, INFORMS, vol. 20(3), pages 629-642, June.
    3. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    2. Gunhak Lee & Morton E. O'Kelly, 2009. "Exploring Locational Equilibria In A Competitive Broadband Access Market: Theoretical Modeling Approach," Journal of Regional Science, Wiley Blackwell, vol. 49(5), pages 953-975, December.
    3. Vladimir Marianov & H. A. Eiselt, 2016. "On agglomeration in competitive location models," Annals of Operations Research, Springer, vol. 246(1), pages 31-55, November.
    4. M. Hodgson & Soren Jacobsen, 2009. "A hierarchical location-allocation model with travel based on expected referral distances," Annals of Operations Research, Springer, vol. 167(1), pages 271-286, March.
    5. Carling, Kenneth & Han, Mengjie & Håkansson, Johan & Rebreyend, Pascal, 2015. "Testing the gravity p-median model empirically," Operations Research Perspectives, Elsevier, vol. 2(C), pages 124-132.
    6. Mauricio Resende & Renato Werneck, 2007. "A fast swap-based local search procedure for location problems," Annals of Operations Research, Springer, vol. 150(1), pages 205-230, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Li & Tianyu Zhang & Liang Wang & Hongguang Ma & Xiande Zhao, 2022. "A minimax regret model for the leader–follower facility location problem," Annals of Operations Research, Springer, vol. 309(2), pages 861-882, February.
    2. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    3. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    4. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    5. Heidari, Mehdi & Asadpour, Masoud & Faili, Hesham, 2015. "SMG: Fast scalable greedy algorithm for influence maximization in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 124-133.
    6. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    7. Drezner, Tammy & Drezner, Zvi & Salhi, Said, 2002. "Solving the multiple competitive facilities location problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 138-151, October.
    8. Malgorzata Miklas-Kalczynska, 2024. "Extensions to Competitive Facility Location with Multi-purpose Trips," Networks and Spatial Economics, Springer, vol. 24(3), pages 565-588, September.
    9. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    10. Alberto Ceselli & Federico Liberatore & Giovanni Righini, 2009. "A computational evaluation of a general branch-and-price framework for capacitated network location problems," Annals of Operations Research, Springer, vol. 167(1), pages 209-251, March.
    11. Righini, Giovanni, 1995. "A double annealing algorithm for discrete location/allocation problems," European Journal of Operational Research, Elsevier, vol. 86(3), pages 452-468, November.
    12. Zvi Drezner & Dawit Zerom, 2024. "A refinement of the gravity model for competitive facility location," Computational Management Science, Springer, vol. 21(1), pages 1-18, June.
    13. Zohreh Hosseini Nodeh & Ali Babapour Azar & Rashed Khanjani Shiraz & Salman Khodayifar & Panos M. Pardalos, 2020. "Joint chance constrained shortest path problem with Copula theory," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 110-140, July.
    14. Rolland, Erik & Schilling, David A. & Current, John R., 1997. "An efficient tabu search procedure for the p-Median Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 329-342, January.
    15. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    16. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.
    17. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    18. Hauser, John R. & Urban, Glen L. & Weinberg, Bruce D., 1992. "Time flies when you're having fun : how consumers allocate their time when evaluating products," Working papers 3439-92., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. Amini, M. Mehdi & Retzlaff-Roberts, Donna & Bienstock, Carol C., 2005. "Designing a reverse logistics operation for short cycle time repair services," International Journal of Production Economics, Elsevier, vol. 96(3), pages 367-380, June.
    20. P B Mirchandani & A Oudjit, 1982. "Probabilistic Demands and Costs in Facility Location Problems," Environment and Planning A, , vol. 14(7), pages 917-932, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:10:y:1978:i:11:p:1273-1285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.