IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v420y2015icp124-133.html
   My bibliography  Save this article

SMG: Fast scalable greedy algorithm for influence maximization in social networks

Author

Listed:
  • Heidari, Mehdi
  • Asadpour, Masoud
  • Faili, Hesham

Abstract

Influence maximization is the problem of finding k most influential nodes in a social network. Many works have been done in two different categories, greedy approaches and heuristic approaches. The greedy approaches have better influence spread, but lower scalability on large networks. The heuristic approaches are scalable and fast but not for all type of networks. Improving the scalability of greedy approach is still an open and hot issue. In this work we present a fast greedy algorithm called State Machine Greedy that improves the existing algorithms by reducing calculations in two parts: (1) counting the traversing nodes in estimate propagation procedure, (2) Monte-Carlo graph construction in simulation of diffusion. The results show that our method makes a huge improvement in the speed over the existing greedy approaches.

Suggested Citation

  • Heidari, Mehdi & Asadpour, Masoud & Faili, Hesham, 2015. "SMG: Fast scalable greedy algorithm for influence maximization in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 124-133.
  • Handle: RePEc:eee:phsmap:v:420:y:2015:i:c:p:124-133
    DOI: 10.1016/j.physa.2014.10.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114009431
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.10.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. CORNUEJOLS, Gérard & FISHER, Marshall L. & NEMHAUSER, George L., 1977. "Location of bank accounts to optimize float: An analytic study of exact and approximate algorithms," LIDAM Reprints CORE 292, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Gerard Cornuejols & Marshall L. Fisher & George L. Nemhauser, 1977. "Exceptional Paper--Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms," Management Science, INFORMS, vol. 23(8), pages 789-810, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Liu & Xiangke Liao & Shanshan Li & Si Zheng & Bin Lin & Jingying Zhang & Lisong Shao & Chenlin Huang & Liquan Xiao, 2017. "On the Shoulders of Giants: Incremental Influence Maximization in Evolving Social Networks," Complexity, Hindawi, vol. 2017, pages 1-14, September.
    2. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Li, Shudong & Zhao, Dawei & Wu, Xiaobo & Tian, Zhihong & Li, Aiping & Wang, Zhen, 2020. "Functional immunization of networks based on message passing," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    4. Wang, Qiyao & Jin, Yuehui & Lin, Zhen & Cheng, Shiduan & Yang, Tan, 2016. "Influence maximization in social networks under an independent cascade-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 20-34.
    5. Tang, Jianxin & Zhang, Ruisheng & Yao, Yabing & Yang, Fan & Zhao, Zhili & Hu, Rongjing & Yuan, Yongna, 2019. "Identification of top-k influential nodes based on enhanced discrete particle swarm optimization for influence maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 477-496.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Lu & John J. Hasenbein & David P. Morton, 2016. "Modeling and Optimization of a Spatial Detection System," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 512-526, August.
    2. Jeffrey D. Camm & Susan K. Norman & Stephen Polasky & Andrew R. Solow, 2002. "Nature Reserve Site Selection to Maximize Expected Species Covered," Operations Research, INFORMS, vol. 50(6), pages 946-955, December.
    3. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    4. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    5. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.
    6. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    7. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    8. Alberto Ceselli & Federico Liberatore & Giovanni Righini, 2009. "A computational evaluation of a general branch-and-price framework for capacitated network location problems," Annals of Operations Research, Springer, vol. 167(1), pages 209-251, March.
    9. Kurt Jörnsten & Andreas Klose, 2016. "An improved Lagrangian relaxation and dual ascent approach to facility location problems," Computational Management Science, Springer, vol. 13(3), pages 317-348, July.
    10. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    11. Righini, Giovanni, 1995. "A double annealing algorithm for discrete location/allocation problems," European Journal of Operational Research, Elsevier, vol. 86(3), pages 452-468, November.
    12. Pierre Hansen & Jack Brimberg & Dragan Urošević & Nenad Mladenović, 2007. "Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 552-564, November.
    13. Zohreh Hosseini Nodeh & Ali Babapour Azar & Rashed Khanjani Shiraz & Salman Khodayifar & Panos M. Pardalos, 2020. "Joint chance constrained shortest path problem with Copula theory," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 110-140, July.
    14. Rolland, Erik & Schilling, David A. & Current, John R., 1997. "An efficient tabu search procedure for the p-Median Problem," European Journal of Operational Research, Elsevier, vol. 96(2), pages 329-342, January.
    15. Michael Brusco & Douglas Steinley, 2015. "Affinity Propagation and Uncapacitated Facility Location Problems," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 443-480, October.
    16. Klages-Mundt, Ariah & Minca, Andreea, 2022. "Optimal intervention in economic networks using influence maximization methods," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1136-1148.
    17. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.
    18. Hauser, John R. & Urban, Glen L. & Weinberg, Bruce D., 1992. "Time flies when you're having fun : how consumers allocate their time when evaluating products," Working papers 3439-92., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. O Berman & Q Wang, 2007. "Locating semi-obnoxious facilities with expropriation: minisum criterion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 378-390, March.
    20. P B Mirchandani & A Oudjit, 1982. "Probabilistic Demands and Costs in Facility Location Problems," Environment and Planning A, , vol. 14(7), pages 917-932, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:420:y:2015:i:c:p:124-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.