IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i3p517-532.html
   My bibliography  Save this article

Amine-Ionic Liquid Blends in CO2 Capture Process for Sustainable Energy and Environment

Author

Listed:
  • Muthumari Perumal
  • Dhanalakshmi Jayaraman

Abstract

In the present work, an experiment for CO 2 capture process were performed by absorption using various aqueous solvent blends of amine and ionic liquids. The solvent blends were prepared for various compositions by mixing TetraButylAmmonium Acetate [TBA][OAC] and TetraButylAmmonium Bromide [TBA][Br] ionic liquids with Monoethanolamine (MEA). The obtained results were compared with baseline MEA. It was observed that capture efficiency of CO 2 , absorption rate of CO 2 and CO 2 diffusion coefficient of MEA-[TBA][OAC] and MEA-[TBA][Br] solvent blends were comparatively higher than baseline 30%MEA. Moreover, the parameters such as density, viscosity, pH, carbon loading and surface tension of all the solvent blends were measured for before and after absorption process. The carbon loading of solvent blends MEA-[TBA][Br] (0.405 mole of CO 2 /mole of solvent) and MEA-[TBA][OAC](0.459 mole of CO 2 /mole of solvent) was slightly lower than baseline MEA (0.494 mole of CO 2 /mole of solvent). However, the viscosity of MEA-[TBA][Br] blends were remarkably lower than MEA-[TBA][OAC] blend and baseline MEA. This might be an important key factor in solvent recovery process with lesser energy demand for sustainable energy and environment.

Suggested Citation

  • Muthumari Perumal & Dhanalakshmi Jayaraman, 2023. "Amine-Ionic Liquid Blends in CO2 Capture Process for Sustainable Energy and Environment," Energy & Environment, , vol. 34(3), pages 517-532, May.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:3:p:517-532
    DOI: 10.1177/0958305X211070782
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211070782
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211070782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aghaie, Mahsa & Rezaei, Nima & Zendehboudi, Sohrab, 2018. "A systematic review on CO2 capture with ionic liquids: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 502-525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
    2. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    4. Majeda Khraisheh & Khadija M. Zadeh & Abedalkhader I. Alkhouzaam & Dorra Turki & Mohammad K. Hassan & Fares Al Momani & Syed M. J. Zaidi, 2020. "Characterization of polysulfone/diisopropylamine 1‐alkyl‐3‐methylimidazolium ionic liquid membranes: high pressure gas separation applications," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 795-808, August.
    5. Hossain, S. M. Zakir & Sultana, Nahid & Razzak, Shaikh A. & Hossain, Mohammad M., 2022. "Modeling and multi-objective optimization of microalgae biomass production and CO2 biofixation using hybrid intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Carminati, Hudson Bolsoni & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2021. "Sustainable Gas-to-Wire via dry reforming of carbonated natural gas: Ionic-liquid pre-combustion capture and thermodynamic efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    8. Riccardo Risso & Lucia Cardona & Maurizio Archetti & Filippo Lossani & Barbara Bosio & Dario Bove, 2023. "A Review of On-Board Carbon Capture and Storage Techniques: Solutions to the 2030 IMO Regulations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    9. Gao, Wanlin & Zhou, Tuantuan & Gao, Yanshan & Wang, Qiang, 2019. "Enhanced water gas shift processes for carbon dioxide capture and hydrogen production," Applied Energy, Elsevier, vol. 254(C).
    10. Ahmed M. Nassef, 2023. "Improving CO 2 Absorption Using Artificial Intelligence and Modern Optimization for a Sustainable Environment," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    11. Sun, Jiasi & Sato, Yuki & Sakai, Yuka & Kansha, Yasuki, 2023. "Ternary deep eutectic solvents: Evaluations based on how their physical properties affect energy consumption during post-combustion CO2 capture," Energy, Elsevier, vol. 270(C).
    12. Vahid Barahimi & Monica Ho & Eric Croiset, 2023. "From Lab to Fab: Development and Deployment of Direct Air Capture of CO 2," Energies, MDPI, vol. 16(17), pages 1-33, September.
    13. Haider, Junaid & Saeed, Saad & Qyyum, Muhammad Abdul & Kazmi, Bilal & Ahmad, Rizwan & Muhammad, Ayyaz & Lee, Moonyong, 2020. "Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Ninghong Jia & Chenyutong Wu & Chang He & Weifeng Lv & Zemin Ji & Lanchang Xing, 2024. "Cross-Borehole ERT Monitoring System for CO 2 Geological Storage: Laboratory Development and Validation," Energies, MDPI, vol. 17(3), pages 1-19, February.
    15. Enbin Liu & Xudong Lu & Daocheng Wang, 2023. "A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges," Energies, MDPI, vol. 16(6), pages 1-48, March.
    16. Carminati, Hudson Bolsoni & de Medeiros, José Luiz & Moure, Gustavo Torres & Barbosa, Lara Costa & Araújo, Ofélia de Queiroz F., 2020. "Low-emission pre-combustion gas-to-wire via ionic-liquid [Bmim][NTf2] absorption with high-pressure stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Syed Awais Ali & Waqad Ul Mulk & Zahoor Ullah & Haris Khan & Afrah Zahid & Mansoor Ul Hassan Shah & Syed Nasir Shah, 2022. "Recent Advances in the Synthesis, Application and Economic Feasibility of Ionic Liquids and Deep Eutectic Solvents for CO 2 Capture: A Review," Energies, MDPI, vol. 15(23), pages 1-31, November.
    18. Chen, Yifeng & Sun, Yunhao & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent," Applied Energy, Elsevier, vol. 257(C).
    19. Laura A. Pellegrini & Matteo Gilardi & Fabio Giudici & Elvira Spatolisano, 2021. "New Solvents for CO 2 and H 2 S Removal from Gaseous Streams," Energies, MDPI, vol. 14(20), pages 1-40, October.
    20. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:3:p:517-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.