IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i3p582-598.html
   My bibliography  Save this article

Wind energy and the historic environment: A business-driven symbiosis approach

Author

Listed:
  • George A Xydis
  • Katerina Kremastioti
  • Maria Panagiotidou

Abstract

The present study discusses alternative ways of achieving optimum energy efficiency for historic buildings in areas where sustainable energy projects are planned. About 25% of Europe’s building stock was constructed before the mid-20th century and despite EU’s strenuous efforts for the protection and conservation of historic buildings and complexes, achieving energy efficiency with the minimum or preferably no intervention remains as a requirement. The settlement of Monemvasia, has been selected as our case study. A model building was chosen, its special characteristics are presented, and four solutions to the energy efficiency upgrade of the building were tested: (a) the application of internal insulation, (b) a heat pump installation, (c) the application of roof insulation, and (d) the replacement of the internal doorframes. The four scenarios were simulated via the TEE-KENAK software and the percentage of the annual energy saved through the application of each one of the mentioned measures was estimated. The results proved that installing a heat pump and internal insulation would maximise energy savings. Coupling the energy demand of the settlement in correlation with a wind energy project in the wider area, and the available curtailment was explored. The results showed that if 300 houses decide on acquiring their electricity consumption from the local wind independent power producer, at a price of EUR 35/MWh, the possible profit from the market could reach EUR100,000 per year. Such a business-driven concept could be extrapolated and evolve into a holistic wind energy and historic environment symbiosis setting.

Suggested Citation

  • George A Xydis & Katerina Kremastioti & Maria Panagiotidou, 2022. "Wind energy and the historic environment: A business-driven symbiosis approach," Energy & Environment, , vol. 33(3), pages 582-598, May.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:3:p:582-598
    DOI: 10.1177/0958305X211014870
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211014870
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211014870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Akkurt, G.G. & Aste, N. & Borderon, J. & Buda, A. & Calzolari, M. & Chung, D. & Costanzo, V. & Del Pero, C. & Evola, G. & Huerto-Cardenas, H.E. & Leonforte, F. & Lo Faro, A. & Lucchi, E. & Marletta, L, 2020. "Dynamic thermal and hygrometric simulation of historical buildings: Critical factors and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Analysis and countermeasures of wind power curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1429-1436.
    3. Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
    4. Xydis, G., 2012. "Effects of air psychrometrics on the exergetic efficiency of a wind farm at a coastal mountainous site – An experimental study," Energy, Elsevier, vol. 37(1), pages 632-638.
    5. Ivan Pavić & Zora Luburić & Hrvoje Pandžić & Tomislav Capuder & Ivan Andročec, 2019. "Defining and Evaluating Use Cases for Battery Energy Storage Investments: Case Study in Croatia," Energies, MDPI, vol. 12(3), pages 1-23, January.
    6. Panagiotis Michalitsakos & Lucian Mihet-Popa & George Xydis, 2017. "A Hybrid RES Distributed Generation System for Autonomous Islands: A DER-CAM and Storage-Based Economic and Optimal Dispatch Analysis," Sustainability, MDPI, vol. 9(11), pages 1-16, November.
    7. Luca Evangelisti & Gabriele Battista & Claudia Guattari & Carmine Basilicata & Roberto De Lieto Vollaro, 2014. "Influence of the Thermal Inertia in the European Simplified Procedures for the Assessment of Buildings’ Energy Performance," Sustainability, MDPI, vol. 6(7), pages 1-11, July.
    8. Xydis, George A. & Nanaki, Evanthia A. & Koroneos, Christopher J., 2013. "Low-enthalpy geothermal resources for electricity production: A demand-side management study for intelligent communities," Energy Policy, Elsevier, vol. 62(C), pages 118-123.
    9. Qi, Ye & Dong, Wenjuan & Dong, Changgui & Huang, Caiwei, 2019. "Understanding institutional barriers for wind curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 476-486.
    10. Roberts, Simon, 2008. "Altering existing buildings in the UK," Energy Policy, Elsevier, vol. 36(12), pages 4482-4486, December.
    11. Pengfei Sheng & Yaping He & Xiaohui Guo, 2017. "The impact of urbanization on energy consumption and efficiency," Energy & Environment, , vol. 28(7), pages 673-686, November.
    12. Drew, Daniel R. & Coker, Phil J. & Bloomfield, Hannah C. & Brayshaw, David J. & Barlow, Janet F. & Richards, Andrew, 2019. "Sunny windy sundays," Renewable Energy, Elsevier, vol. 138(C), pages 870-875.
    13. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    2. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Xu, Fangqiu & Liu, Jicheng & Lin, Shuaishuai & Dai, Qiongjie & Li, Cunbin, 2018. "A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China," Energy, Elsevier, vol. 163(C), pages 585-603.
    4. Song, Feng & Yu, Zichao & Zhuang, Weiting & Lu, Ao, 2021. "The institutional logic of wind energy integration: What can China learn from the United States to reduce wind curtailment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Cui, Qi & Liu, Yu & Ali, Tariq & Gao, Ji & Chen, Hao, 2020. "Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity," Energy Economics, Elsevier, vol. 91(C).
    6. Da Liu & Shou-Kai Wang & Jin-Chen Liu & Han Huang & Xing-Ping Zhang & Yi Feng & Wei-Jun Wang, 2017. "Optimum Subsidy to Promote Electric Boiler Investment to Accommodate Wind Power," Sustainability, MDPI, vol. 9(6), pages 1-11, May.
    7. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    8. López Prol, Javier & Zilberman, David, 2023. "No alarms and no surprises: Dynamics of renewable energy curtailment in California," Energy Economics, Elsevier, vol. 126(C).
    9. Wu, Geng & Wang, Haojing & Wu, Qingguo, 2020. "Wind power development in the Belt and Road area of Xinjiang, China: Problems and solutions," Utilities Policy, Elsevier, vol. 64(C).
    10. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    11. Wang, Weijun & Dong, Zeyuan, 2021. "Economic benefits assessment of urban wind power central heating demonstration project considering the quantification of environmental benefits: A case from northern China," Energy, Elsevier, vol. 225(C).
    12. Song, Feng & Bi, De & Wei, Chu, 2019. "Market segmentation and wind curtailment: An empirical analysis," Energy Policy, Elsevier, vol. 132(C), pages 831-838.
    13. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
    14. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
    15. Qi, Ye & Dong, Wenjuan & Dong, Changgui & Huang, Caiwei, 2019. "Understanding institutional barriers for wind curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 476-486.
    16. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    17. Hui Huang & Yingying Du & Shizhong Song & Yanlei Guo, 2020. "Key Technologies and Economic Analysis of Decentralized Wind Power Consumption: A Case Study in B City, China," Energies, MDPI, vol. 13(16), pages 1-23, August.
    18. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    19. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    20. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:3:p:582-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.