IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v26y2015i3p391-415.html
   My bibliography  Save this article

Negligence, Non-Science, and Consensus Climatology

Author

Listed:
  • Patrick Frank

    (Palo Alto, CA, USA)

Abstract

The purported consensus that human greenhouse gas emissions have causally dominated the recent climate warming depends decisively upon three lines of evidence: climate model projections, reconstructed paleo-temperatures, and the instrumental surface air temperature record. However, CMIP5 climate model simulations of global cloud fraction reveal theory-bias error. Propagation of this cloud forcing error uncovers a r.s.s.e. uncertainty 1σ ≈ ±15 C in centennially projected air temperature. Causal attribution of warming is therefore impossible. Climate models also fail to reproduce targeted climate observables. For their part, consensus paleo-temperature reconstructions deploy an improper ‘correlation = causation’ logic, suborn physical theory, and represent a descent into pseudo-science. Finally, the published global averaged surface air temperature record completely neglects systematic instrumental error. The average annual systematic measurement uncertainty, 1σ = ±0.5 C, completely vitiates centennial climate warming at the 95% confidence interval. The entire consensus position fails critical examination and evidences pervasive analytical negligence.

Suggested Citation

  • Patrick Frank, 2015. "Negligence, Non-Science, and Consensus Climatology," Energy & Environment, , vol. 26(3), pages 391-415, April.
  • Handle: RePEc:sae:engenv:v:26:y:2015:i:3:p:391-415
    DOI: 10.1260/0958-305X.26.3.391
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1260/0958-305X.26.3.391
    Download Restriction: no

    File URL: https://libkey.io/10.1260/0958-305X.26.3.391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael E. Mann & Raymond S. Bradley & Malcolm K. Hughes, 1998. "Global-scale temperature patterns and climate forcing over the past six centuries," Nature, Nature, vol. 392(6678), pages 779-787, April.
    2. Victor R. Vasquez & Wallace B. Whiting, 2005. "Accounting for Both Random Errors and Systematic Errors in Uncertainty Propagation Analysis of Computer Models Involving Experimental Measurements with Monte Carlo Methods," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1669-1681, December.
    3. Paul R. Sheppard, 2010. "Dendroclimatology: extracting climate from trees," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(3), pages 343-352, May.
    4. Green, Kesten C. & Armstrong, J. Scott & Soon, Willie, 2009. "Validity of climate change forecasting for public policy decision making," International Journal of Forecasting, Elsevier, vol. 25(4), pages 826-832, October.
    5. Julia C. Hargreaves, 2010. "Skill and uncertainty in climate models," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(4), pages 556-564, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    2. Fabien Candau & Tchapo Gbandi, 2023. "When Climate Change Determines International Agreements: Evidence from Water Treaties," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 587-614, August.
    3. Pierre Perron & Francisco Estrada & Carlos Gay-García & Benjamín Martínez-López, 2011. "A time-series analysis of the 20th century climate simulations produced for the IPCC’s AR4," Boston University - Department of Economics - Working Papers Series WP2011-051, Boston University - Department of Economics.
    4. Zbigniew Jaworowski, 2005. "Nature Rules the Climate," Energy & Environment, , vol. 16(1), pages 131-147, January.
    5. Liang Yi & Hongjun Yu & Junyi Ge & Zhongping Lai & Xingyong Xu & Li Qin & Shuzhen Peng, 2012. "Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records," Climatic Change, Springer, vol. 110(1), pages 469-498, January.
    6. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    7. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    8. Stephen McIntyre & Ross McKitrick, 2005. "The M&M Critique of the MBH98 Northern Hemisphere Climate Index: Update and Implications," Energy & Environment, , vol. 16(1), pages 69-100, January.
    9. Liu, Sen & Gao, Hongxia & He, Chuan & Liang, Zhiwu, 2019. "Experimental evaluation of highly efficient primary and secondary amines with lower energy by a novel method for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 233, pages 443-452.
    10. Jiří Šindelář, 2019. "Sales forecasting in financial distribution: a comparison of quantitative forecasting methods," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(3), pages 69-80, December.
    11. Jeremy Galbreath, 2010. "Corporate governance practices that address climate change: an exploratory study," Business Strategy and the Environment, Wiley Blackwell, vol. 19(5), pages 335-350, July.
    12. Doru Bănăduc & Saša Marić & Kevin Cianfaglione & Sergey Afanasyev & Dóra Somogyi & Krisztián Nyeste & László Antal & Ján Koščo & Marko Ćaleta & Josef Wanzenböck & Angela Curtean-Bănăduc, 2022. "Stepping Stone Wetlands, Last Sanctuaries for European Mudminnow: How Can the Human Impact, Climate Change, and Non-Native Species Drive a Fish to the Edge of Extinction?," Sustainability, MDPI, vol. 14(20), pages 1-39, October.
    13. Travaglini, Guido, 2011. "Climate change: where is the hockey stick? evidence from millennial-scale reconstructed and updated temperature time series," MPRA Paper 35565, University Library of Munich, Germany.
    14. Jyoti Singh & Sandeep Sahany & Alan Robock, 2020. "Can stratospheric geoengineering alleviate global warming-induced changes in deciduous fruit cultivation? The case of Himachal Pradesh (India)," Climatic Change, Springer, vol. 162(3), pages 1323-1343, October.
    15. Maria Dolores Gadea & Jesus Gonzalo & Andrey Ramos, 2023. "Trends in Temperature Data: Micro-foundations of Their Nature," Papers 2312.06379, arXiv.org.
    16. Johannes Koch & John Clague, 2011. "Extensive glaciers in northwest North America during Medieval time," Climatic Change, Springer, vol. 107(3), pages 593-613, August.
    17. Stephen McIntyre & Ross McKitrick, 2003. "Corrections to the Mann et. al. (1998) Proxy Data Base and Northern Hemispheric Average Temperature Series," Energy & Environment, , vol. 14(6), pages 751-771, November.
    18. Pei Xing & Xin Chen & Yong Luo & Suping Nie & Zongci Zhao & Jianbin Huang & Shaowu Wang, 2016. "The Extratropical Northern Hemisphere Temperature Reconstruction during the Last Millennium Based on a Novel Method," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-19, January.
    19. Vincent Geloso, 2024. "Does the conquest explain Quebec’s historical poverty? The economic consequences of 1760," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 18(3), pages 905-938, September.
    20. Chinmay U. Dongare & Bhushan S. Deota & Mudit D. Mankad & Yogi N. Trivedi, 2024. "Quasquicentennial shrinkage of glacier as a testimony of regional climate change: an example of Janapa Garang glacier (JPG), Baspa basin, Western Himalayas, India," Climatic Change, Springer, vol. 177(2), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:26:y:2015:i:3:p:391-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.