IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v44y2023i3p223-250.html
   My bibliography  Save this article

How Cost-effective are Electric Vehicle Subsidies in Reducing Tailpipe-CO2 Emissions? An Analysis of Major Electric Vehicle Markets

Author

Listed:
  • Tamara L. Sheldon
  • Rubal Dua
  • Omar Abdullah Alharbib

Abstract

We estimate the cost-effectiveness of plug-in electric vehicle (PEV) subsidies in reducing tailpipe-CO2 emissions in China, the U.S., and nine European countries. We find that the per-tonne cost of tailpipe-CO2 avoided increases linearly with the government-subsidized percentage of the PEV price. Costs are relatively higher in the Netherlands and Denmark, which subsidized high-priced PEVs including plug-in hybrids, and lower in the U.S., where PEVs replaced higher-emissions cars. Chinese PEV subsidies have a short-run static cost of up to $1,600 per tonne, far exceeding the social cost of carbon, suggesting that subsidies are more a part of China’s industrial policy than its carbon policy. When subsidy-induced PEV sales and power generation emissions are considered, the ordering of countries based on the cost-effectiveness of subsidies changes. The long-run dynamic subsidy cost is expected to be lower, as current subsidies may drive future innovation and sales, and due to grid decarbonization.

Suggested Citation

  • Tamara L. Sheldon & Rubal Dua & Omar Abdullah Alharbib, 2023. "How Cost-effective are Electric Vehicle Subsidies in Reducing Tailpipe-CO2 Emissions? An Analysis of Major Electric Vehicle Markets," The Energy Journal, , vol. 44(3), pages 223-250, May.
  • Handle: RePEc:sae:enejou:v:44:y:2023:i:3:p:223-250
    DOI: 10.5547/01956574.44.2.tshe
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.44.2.tshe
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.44.2.tshe?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ashley Langer & Derek Lemoine, 2022. "Designing Dynamic Subsidies to Spur Adoption of New Technologies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(6), pages 1197-1234.
    2. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    3. Archsmith, James & Kendall, Alissa & Rapson, David, 2015. "From Cradle to Junkyard: Assessing the Life Cycle Greenhouse Gas Benefits of Electric Vehicles," Research in Transportation Economics, Elsevier, vol. 52(C), pages 72-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lohawala, Nafisa, 2023. "Roadblock or Accelerator? The Effect of Electric Vehicle Subsidy Elimination," RFF Working Paper Series 23-13, Resources for the Future.
    2. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    3. Sheldon, Tamara L. & Dua, Rubal, 2018. "Gasoline savings from clean vehicle adoption," Energy Policy, Elsevier, vol. 120(C), pages 418-424.
    4. Meunier, Guy & Ponssard, Jean-Pierre, 2020. "Optimal policy and network effects for the deployment of zero emission vehicles," European Economic Review, Elsevier, vol. 126(C).
    5. Roberto Amaral-Santos & Ariaster Chimeli & Joao Paulo Pessoa, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," Working Papers, Department of Economics 2023_07, University of São Paulo (FEA-USP).
    6. Zunian Luo, 2022. "Powering Up a Slow Charging Market: How Do Government Subsidies Affect Charging Station Supply?," Papers 2210.14908, arXiv.org, revised Jan 2023.
    7. Lucas W. Davis & James M. Sallee, 2020. "Should Electric Vehicle Drivers Pay a Mileage Tax?," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 1(1), pages 65-94.
    8. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    9. Leslie A. Martin, 2022. "Driving on Sunbeams: Interactions Between Price Incentives for Electric Vehicles, Residential Solar Photovoltaics and Household Battery Systems," Economic Papers, The Economic Society of Australia, vol. 41(4), pages 369-384, December.
    10. Holland, Stephen P. & Mansur, Erin T. & Muller, Nicholas Z. & Yates, Andrew J., 2021. "The environmental benefits of transportation electrification: Urban buses," Energy Policy, Elsevier, vol. 148(PA).
    11. Stephen P. Holland & Erin T. Mansur & Andrew J. Yates, 2021. "The Electric Vehicle Transition and the Economics of Banning Gasoline Vehicles," American Economic Journal: Economic Policy, American Economic Association, vol. 13(3), pages 316-344, August.
    12. Michael Hardinghaus & Christian Seidel & John E. Anderson, 2019. "Estimating Public Charging Demand of Electric Vehicles," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    13. Mark Colas & Emmett Saulnier, 2023. "Optimal Subsidies for Residential Solar," CESifo Working Paper Series 10446, CESifo.
    14. Jianwei Xing & Benjamin Leard & Shanjun Li, 2019. "What Does an Electric Vehicle Replace?," NBER Working Papers 25771, National Bureau of Economic Research, Inc.
    15. Linn, Joshua, 2022. "Balancing Equity and Effectiveness for Electric Vehicle Subsidies," RFF Working Paper Series 22-07, Resources for the Future.
    16. James Archsmith & Erich Muehlegger & David S. Rapson, 2022. "Future Paths of Electric Vehicle Adoption in the United States: Predictable Determinants, Obstacles, and Opportunities," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 3(1), pages 71-110.
    17. Spiller, Elisheba & Sopher, Peter & Martin, Nicholas & Mirzatuny, Marita & Zhang, Xinxing, 2017. "The environmental impacts of green technologies in TX," Energy Economics, Elsevier, vol. 68(C), pages 199-214.
    18. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    19. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    20. Jenn, Alan & Azevedo, Inês L. & Michalek, Jeremy J., 2019. "Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 396-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:44:y:2023:i:3:p:223-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.