IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v39y2018i3p93-116.html
   My bibliography  Save this article

A Spatial Stochastic Frontier Model with Omitted Variables: Electricity Distribution in Norway

Author

Listed:
  • Luis Orea
  • Inmaculada C. Alvarez
  • Tooraj Jamasb

Abstract

An important methodological issue in efficiency analysis for incentive regulation of utilities is how to account for the effect of unobserved cost drivers such as environmental factors. We combine a spatial econometric approach with stochastic frontier analysis to control for unobserved environmental conditions when measuring efficiency of electricity distribution utilities. Our empirical strategy relies on the geographic location of firms as a source of information that has previously not been explored in the literature. The underlying idea is to utilise data from neighbouring firms that can be spatially correlated as proxies for unobserved cost drivers. We illustrate this approach using a dataset of Norwegian distribution utilities for the 2004-2011 period. We show that the lack of information on weather and geographic conditions can be compensated with data from surrounding firms. The methodology can be used in efficiency analysis and regulation of other utilities sectors where unobservable cost drivers are important, e.g. gas, water, agriculture, fishing.

Suggested Citation

  • Luis Orea & Inmaculada C. Alvarez & Tooraj Jamasb, 2018. "A Spatial Stochastic Frontier Model with Omitted Variables: Electricity Distribution in Norway," The Energy Journal, , vol. 39(3), pages 93-116, May.
  • Handle: RePEc:sae:enejou:v:39:y:2018:i:3:p:93-116
    DOI: 10.5547/01956574.39.3.lore
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.39.3.lore
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.39.3.lore?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Toru Hattori & Tooraj Jamasb & Michael Pollitt, 2005. "Electricity Distribution in the UK and Japan: A Comparative Efficiency Analysis 1985-1998," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 23-48.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Dimitri Dimitropoulos and Adonis Yatchew, 2017. "Is Productivity Growth in Electricity Distribution Negative? An Empirical Analysis Using Ontario Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Haney, Aoife Brophy & Pollitt, Michael G., 2013. "International benchmarking of electricity transmission by regulators: A contrast between theory and practice?," Energy Policy, Elsevier, vol. 62(C), pages 267-281.
    5. Subal Kumbhakar & Roar Amundsveen & Hilde Kvile & Gudbrand Lien, 2015. "Scale economies, technical change and efficiency in Norwegian electricity distribution, 1998–2010," Journal of Productivity Analysis, Springer, vol. 43(3), pages 295-305, June.
    6. Growitsch, Christian & Jamasb, Tooraj & Wetzel, Heike, 2012. "Efficiency effects of observed and unobserved heterogeneity: Evidence from Norwegian electricity distribution networks," Energy Economics, Elsevier, vol. 34(2), pages 542-548.
    7. Wang, Hung-Jen, 2003. "A Stochastic Frontier Analysis of Financing Constraints on Investment: The Case of Financial Liberalization in Taiwan," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 406-419, July.
    8. Greene, William & Orea, Luis & Wall, Alan, 2011. "A one-stage random effect counterpart of the fixed-effect vector decomposition model with an application to UK electricity distribution utilities," Efficiency Series Papers 2011/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    9. Jamasb, Tooraj & Pollitt, Michael, 2003. "International benchmarking and regulation: an application to European electricity distribution utilities," Energy Policy, Elsevier, vol. 31(15), pages 1609-1622, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony J. Glass & Karligash Kenjegalieva, 2023. "Dynamic returns to scale and geography in U.S. banking," Papers in Regional Science, Wiley Blackwell, vol. 102(1), pages 53-85, February.
    2. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    3. Orea, Luis & Álvarez, Inmaculada C., 2019. "A new stochastic frontier model with cross-sectional effects in both noise and inefficiency terms," Journal of Econometrics, Elsevier, vol. 213(2), pages 556-577.
    4. Álvarez, Inmaculada C. & Gude, Alberto & Orea, Luis, 2019. "Effects of inter-industry and spatial spillovers on regional productivity: Evidence from Spanish panel data," Efficiency Series Papers 2019/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    5. Kerui Du & Luis Orea & Inmaculada C. Álvarez, 2024. "Fitting spatial stochastic frontier models in Stata," Stata Journal, StataCorp LP, vol. 24(3), pages 402-426, September.
    6. Orea, Luis & Álvarez, Inmaculada C., 2019. "Spatial Production Economics," Efficiency Series Papers 2019/06, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    7. Zhang, Qizheng & Qian, Zesen & Wang, Shuo & Yuan, Lingran & Gong, Binlei, 2022. "Productivity drain or productivity gain? The effect of new technology adoption in the oilfield market," Energy Economics, Elsevier, vol. 108(C).
    8. Kassoum Ayouba, 2023. "Spatial dependence in production frontier models," Journal of Productivity Analysis, Springer, vol. 60(1), pages 21-36, August.
    9. Glass, Anthony J. & Kenjegalieva, Karligash & Douch, Mustapha, 2020. "Uncovering spatial productivity centers using asymmetric bidirectional spillovers," European Journal of Operational Research, Elsevier, vol. 285(2), pages 767-788.
    10. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim J.S., 2024. "Can operational efficiency in the Portuguese electricity sector be improved? Yes, but..," Energy Policy, Elsevier, vol. 190(C).
    11. Anthony J. Glass & Karligash Kenjegalieva, 2024. "Returns to scale, spillovers and persistence: A network perspective of U.S. bank size," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2049-2076, April.
    12. Wenche Tobiasson & Manuel Llorca & Tooraj Jamasb, 2021. "Performance Effects of Network Structure and Ownership: The Norwegian Electricity Distribution Sector," Energies, MDPI, vol. 14(21), pages 1-15, November.
    13. Glass, Anthony J. & Kenjegalieva, Karligash, 2019. "A spatial productivity index in the presence of efficiency spillovers: Evidence for U.S. banks, 1992–2015," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1165-1179.
    14. Zhang, Tao & Li, Hong-Zhou & Xie, Bai-Chen, 2022. "Have renewables and market-oriented reforms constrained the technical efficiency improvement of China's electric grid utilities?," Energy Economics, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orea, L. & Álvarez, I & Jamasb, T., 2016. "Using a spatial econometric approach to mitigate omitted variables in stochastic frontier models: An application to Norwegian electricity distribution networks," Cambridge Working Papers in Economics 1673, Faculty of Economics, University of Cambridge.
    2. Orea, Luis & Álvarez, Inmaculada C. & Jamasb, Tooraj, 2016. "A spatial approach to control for unobserved environmental conditions when measuring firms’ technology: an application to Norwegian electricity distribution networks," Efficiency Series Papers 2016/06, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    3. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    4. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    5. Ajayi, Victor & Anaya, Karim & Pollitt, Michael, 2022. "Incentive regulation, productivity growth and environmental effects: the case of electricity networks in Great Britain," Energy Economics, Elsevier, vol. 115(C).
    6. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2014. "Using the latent class approach to cluster firms in benchmarking: An application to the US electricity transmission industry," Operations Research Perspectives, Elsevier, vol. 1(1), pages 6-17.
    7. Brown, David P. & Sappington, David E. M., 2023. "Designing Incentive Regulation in the Electricity Sector," Working Papers 2023-10, University of Alberta, Department of Economics.
    8. Xie, Bai-Chen & Zhang, Zhen-Jiang & Anaya, Karim L., 2021. "Has the unbundling reform improved the service efficiency of China's power grid firms?," Energy Economics, Elsevier, vol. 95(C).
    9. Orea, Luis & Álvarez, Inmaculada C., 2019. "A new stochastic frontier model with cross-sectional effects in both noise and inefficiency terms," Journal of Econometrics, Elsevier, vol. 213(2), pages 556-577.
    10. Monastyrenko, Evgenii, 2017. "Eco-efficiency outcomes of mergers and acquisitions in the European electricity industry," Energy Policy, Elsevier, vol. 107(C), pages 258-277.
    11. Nepal, Rabindra & Jamasb, Tooraj, 2015. "Incentive regulation and utility benchmarking for electricity network security," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 117-127.
    12. John Kwoka & Michael Pollitt & Sanem Sergici, 2010. "Divestiture policy and operating efficiency in U.S. electric power distribution," Journal of Regulatory Economics, Springer, vol. 38(1), pages 86-109, August.
    13. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    14. Julio Cesar Mosquera Gutierres & Rafael Coradi Leme & Rodrigo Luiz Mendes Mota & Paulo E. Steele Santos, 2021. "Regulatory efficiency decomposition for utilities’ parallel subsystems," Operational Research, Springer, vol. 21(1), pages 331-347, March.
    15. Ramos-Real, Francisco Javier & Tovar, Beatriz & Iootty, Mariana & de Almeida, Edmar Fagundes & Pinto Jr., Helder Queiroz, 2009. "The evolution and main determinants of productivity in Brazilian electricity distribution 1998-2005: An empirical analysis," Energy Economics, Elsevier, vol. 31(2), pages 298-305, March.
    16. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).
    17. Christian Growitsch & Tooraj Jamasb & Michael Pollitt, 2009. "Quality of service, efficiency and scale in network industries: an analysis of European electricity distribution," Applied Economics, Taylor & Francis Journals, vol. 41(20), pages 2555-2570.
    18. Elvira Silva & Pedro Macedo & Isabel Soares, 2019. "Maximum entropy: a stochastic frontier approach for electricity distribution regulation," Journal of Regulatory Economics, Springer, vol. 55(3), pages 237-257, June.
    19. Janda, Karel & Krska, Stepan, 2014. "Benchmarking Methods in the Regulation of Electricity Distribution System Operators," MPRA Paper 59442, University Library of Munich, Germany.
    20. Luis Orea & Tooraj Jamasb, 2017. "Regulating Heterogeneous Utilities: A New Latent Class Approach with Application to the Norwegian Electricity Distribution Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).

    More about this item

    Keywords

    spatial econometrics; stochastic frontier models; environmental; conditions; electricity distribution networks;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:39:y:2018:i:3:p:93-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.