IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v33y2012i3p39-90.html
   My bibliography  Save this article

Degrees of Coordination in Market Coupling and Counter-Trading

Author

Listed:
  • Giorgia Oggioni
  • Yves Smeers

Abstract

Cross-border trade remains a contentious issue in the restructuring of the European electricity market. This paper analyzes the cross-border trade problem through a set of models that represent different degrees of coordination both between the energy and the transmission markets and among national Transmission System Operators (TSOs). We first present a nodal price-like organization of the system, where Power Exchanges (PXs) and Transmission System Operators are integrated to operate the energy and transmission markets. This system is not implemented in Europe but its success elsewhere makes it the natural reference for the study. We then move to a more realistic representation of the European electricity market based on the so-called market coupling design where energy and transmission are operated separately by PXs and TSOs. We consider different degrees of coordination of the national TSOs’ activities to assess the range of inefficiencies that the lack of integration can lead to. The paper supposes price taking agents and hence leaves aside the incentive to game the system induced by zonal systems.

Suggested Citation

  • Giorgia Oggioni & Yves Smeers, 2012. "Degrees of Coordination in Market Coupling and Counter-Trading," The Energy Journal, , vol. 33(3), pages 39-90, July.
  • Handle: RePEc:sae:enejou:v:33:y:2012:i:3:p:39-90
    DOI: 10.5547/01956574.33.3.3
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.33.3.3
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.33.3.3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adriaan Weijde & Benjamin Hobbs, 2011. "Locational-based coupling of electricity markets: benefits from coordinating unit commitment and balancing markets," Journal of Regulatory Economics, Springer, vol. 39(3), pages 223-251, June.
    2. Weber, Christoph, 2010. "Adequate intraday market design to enable the integration of wind energy into the European power systems," Energy Policy, Elsevier, vol. 38(7), pages 3155-3163, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Bessa & Carlos Moreira & Bernardo Silva & Manuel Matos, 2014. "Handling renewable energy variability and uncertainty in power systems operation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 156-178, March.
    2. Giorgia Oggioni and Yves Smeers, 2012. "Degrees of Coordination in Market Coupling and Counter-Trading," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    4. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    5. Pietz, Matthäus, 2009. "Risk premia in electricity wholesale spot markets: empirical evidence from Germany," CEFS Working Paper Series 2009-11, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    6. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    7. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    8. Goutte, Stéphane & Vassilopoulos, Philippe, 2019. "The value of flexibility in power markets," Energy Policy, Elsevier, vol. 125(C), pages 347-357.
    9. Knaut, Andreas & Paschmann, Martin, 2017. "Decoding Restricted Participation in Sequential Electricity Markets," EWI Working Papers 2017-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 31 Aug 2017.
    10. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    11. Denny, Eleanor & O'Mahoney, Amy & Lannoye, Eamonn, 2017. "Modelling the impact of wind generation on electricity market prices in Ireland: An econometric versus unit commitment approach," Renewable Energy, Elsevier, vol. 104(C), pages 109-119.
    12. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Ocker, Fabian & Jaenisch, Vincent, 2020. "The way towards European electricity intraday auctions – Status quo and future developments," Energy Policy, Elsevier, vol. 145(C).
    14. Kath, Christopher & Ziel, Florian, 2021. "Conformal prediction interval estimation and applications to day-ahead and intraday power markets," International Journal of Forecasting, Elsevier, vol. 37(2), pages 777-799.
    15. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    16. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    17. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "Carbon dioxide (CO2) emissions from electricity: The influence of the North Atlantic Oscillation," Applied Energy, Elsevier, vol. 161(C), pages 487-496.
    18. repec:dui:wpaper:1305 is not listed on IDEAS
    19. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    20. Adriaan Weijde & Benjamin Hobbs, 2011. "Locational-based coupling of electricity markets: benefits from coordinating unit commitment and balancing markets," Journal of Regulatory Economics, Springer, vol. 39(3), pages 223-251, June.
    21. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:33:y:2012:i:3:p:39-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.