IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v29y2008i2_supplp95-124.html
   My bibliography  Save this article

Electricity Wholesale Markets: Designs Now and in a Low-carbon Future

Author

Listed:
  • Richard Green

Abstract

This paper compares electricity wholesale markets in the United States and Europe. The Standard Market Design in the US involves an independent system operator, nodal pricing with financial transmission rights, and integrated markets for capacity and ancillary services. In Europe, there are national, or occasionally zonal, spot markets run by companies independent of the transmission operator, and of the latter’s purchases of ancillary services. As the amount of low-carbon generation increases, prices and transmission constraints are likely to become more volatile, increasing the need to adopt an efficient market design. In most respects, the US standard market design is likely to give better results than the European models.

Suggested Citation

  • Richard Green, 2008. "Electricity Wholesale Markets: Designs Now and in a Low-carbon Future," The Energy Journal, , vol. 29(2_suppl), pages 95-124, December.
  • Handle: RePEc:sae:enejou:v:29:y:2008:i:2_suppl:p:95-124
    DOI: 10.5547/ISSN0195-6574-EJ-Vol29-NoSI2-6
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol29-NoSI2-6
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol29-NoSI2-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolosi, S., 2010. "Wind power integration, negative prices and power system flexibility - An empirical analysis of extreme events in Germany," MPRA Paper 31834, University Library of Munich, Germany.
    2. Orvika Rosnes, 2014. "Subsidies for renewable energy in inflexible power markets," Journal of Regulatory Economics, Springer, vol. 46(3), pages 318-343, December.
    3. MacGill, Iain, 2010. "Electricity market design for facilitating the integration of wind energy: Experience and prospects with the Australian National Electricity Market," Energy Policy, Elsevier, vol. 38(7), pages 3180-3191, July.
    4. Jean Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Cambridge Working Papers in Economics 1354, Faculty of Economics, University of Cambridge.
    5. Zhao, Xiaoli & Wang, Feng & Wang, Mei, 2012. "Large-scale utilization of wind power in China: Obstacles of conflict between market and planning," Energy Policy, Elsevier, vol. 48(C), pages 222-232.
    6. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    7. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    8. Ignacio Herrero & Pablo Rodilla & Carlos Batlle, 2020. "Evolving Bidding Formats and Pricing Schemes in USA and Europe Day-Ahead Electricity Markets," Energies, MDPI, vol. 13(19), pages 1-21, September.
    9. Nepal, Rabindra & Jamasb, Tooraj, 2012. "Interconnections and market integration in the Irish Single Electricity Market," Energy Policy, Elsevier, vol. 51(C), pages 425-434.
    10. Sharabaroff, Alexander & Boyd, Roy & Chimeli, Ariaster, 2009. "The environmental and efficiency effects of restructuring on the electric power sector in the United States: An empirical analysis," Energy Policy, Elsevier, vol. 37(11), pages 4884-4893, November.
    11. Ward, K.R. & Green, R. & Staffell, I., 2019. "Getting prices right in structural electricity market models," Energy Policy, Elsevier, vol. 129(C), pages 1190-1206.
    12. Henriot, Arthur & Glachant, Jean-Michel, 2013. "Melting-pots and salad bowls: The current debate on electricity market design for integration of intermittent RES," Utilities Policy, Elsevier, vol. 27(C), pages 57-64.
    13. Steggals, Will & Gross, Robert & Heptonstall, Philip, 2011. "Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector," Energy Policy, Elsevier, vol. 39(3), pages 1389-1396, March.
    14. Rabindra Nepal & Tooraj Jamasb, 2011. "Market Integration, Efficiency, and Interconnectors: The Irish Single Electricity Market," Working Papers EPRG 1121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Nicolosi, Marco, 2010. "Wind power integration and power system flexibility-An empirical analysis of extreme events in Germany under the new negative price regime," Energy Policy, Elsevier, vol. 38(11), pages 7257-7268, November.
    16. Jenny Riesz & Michael Milligan, 2015. "Designing electricity markets for a high penetration of variable renewables," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 279-289, May.
    17. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    18. Brinker, Laura & Satchwell, Andrew J., 2020. "A comparative review of municipal energy business models in Germany, California, and Great Britain: Institutional context and forms of energy decentralization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Foley, A.M. & Ó Gallachóir, B.P. & McKeogh, E.J. & Milborrow, D. & Leahy, P.G., 2013. "Addressing the technical and market challenges to high wind power integration in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 692-703.
    20. Gorecki, Paul K., 2013. "Ensuring compatibility of the all-island electricity system with the target model: Fitting a square peg into a round hole?," Energy Policy, Elsevier, vol. 52(C), pages 677-688.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andor, Mark A. & Frondel, Manuel & Schmidt, Christoph M. & Simora, Michael & Sommer, Stephan, 2015. "Klima- und Energiepolitik in Deutschland: Dissens und Konsens," RWI Materialien 91, RWI - Leibniz-Institut für Wirtschaftsforschung.
    2. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    3. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    4. Elberg, Christina, 2014. "Cross-Border Effects of Capacity Mechanisms in Electricity Markets," EWI Working Papers 2014-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    5. Growitsch, Christian & Just, Lisa & Pedell, Burkhard, 2014. "Risk Assessment of Investments in Energy-only and Capacity Markets," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(3), pages 181-188.
    6. David P. Brown & Andrew Eckert, 2018. "Analyzing the Impact of Electricity Market Structure Changes and Mergers: The Importance of Forward Commitments," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(1), pages 101-137, February.
    7. Juha Teirilä and Robert A. Ritz, 2019. "Strategic Behaviour in a Capacity Market? The New Irish Electricity Market Design," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    8. Steggals, Will & Gross, Robert & Heptonstall, Philip, 2011. "Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector," Energy Policy, Elsevier, vol. 39(3), pages 1389-1396, March.
    9. Ochoa, Camila & van Ackere, Ann, 2015. "Winners and losers of market coupling," Energy, Elsevier, vol. 80(C), pages 522-534.
    10. Meyer, Roland & Gore, Olga, 2015. "Cross-border effects of capacity mechanisms: Do uncoordinated market design changes contradict the goals of the European market integration?," Energy Economics, Elsevier, vol. 51(C), pages 9-20.
    11. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Aryani, Morteza & Ahmadian, Mohammad & Sheikh-El-Eslami, Mohammad-Kazem, 2020. "Designing a regulatory tool for coordinated investment in renewable and conventional generation capacities considering market equilibria," Applied Energy, Elsevier, vol. 279(C).
    13. Hagspiel, Simeon, 2017. "Reliable Electricity: The Effects of System Integration and Cooperative Measures to Make it Work," EWI Working Papers 2017-13, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    14. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    15. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    16. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    17. Mastropietro, Paolo & Rodilla, Pablo & Rivier, Michel & Batlle, Carlos, 2024. "Reliability options: Regulatory recommendations for the next generation of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 185(C).
    18. Holmberg, P. & Ritz, R., 2019. "Capacity mechanisms and the technology mix in competitive electricity markets," Cambridge Working Papers in Economics 1960, Faculty of Economics, University of Cambridge.
    19. Nagl, Stephan, 2013. "Prices vs. Quantities: Incentives for Renewable Power Generation - Numerical Analysis for the European Power Market," EWI Working Papers 2013-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Elberg, Christina & Kranz, Sebastian, 2013. "Capacity Mechanisms and Effects on Market Structure," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79811, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    Electricity wholesale markets; US-Europe comparison; Efficiency; market design; Low-carbon generation;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:29:y:2008:i:2_suppl:p:95-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.