IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7504-d939940.html
   My bibliography  Save this article

The Anatomy of Unaffordable Electricity in Northern Europe in 2021

Author

Listed:
  • Jaakko Jääskeläinen

    (Department of Mechanical Engineering, Aalto University, Konemiehentie 3, 02150 Espoo, Finland)

  • Kaisa Huhta

    (Centre for Climate Change, Energy & Environmental Law, University of Eastern Finland Law School, Yliopistokatu 2, 80101 Joensuu, Finland)

  • Sanna Syri

    (Department of Mechanical Engineering, Aalto University, Konemiehentie 3, 02150 Espoo, Finland)

Abstract

European electricity prices soared to unusually high levels during 2021, which exposed vulnerabilities in the economy and led to concerns about affordability. The concerns were further exacerbated in 2022, as Europe strove to cut its dependence on the Russian fossil fuel supply, as a result of the Russian invasion of Ukraine. This article explores the causes of the price increases in 2021 and assesses their likely future development by using Finland as a case example. We address a gap in the existing energy literature by elucidating the origins and future outlooks of price spikes in highly interconnected electricity markets. Based on an interdisciplinary combination of legal and qualitative data analysis, this study approaches its key objective in three stages. First, we describe the European market and its regulatory design to demonstrate the legislative framework and preconditions within which the market is expected to operate and how these rules connect to guaranteeing the affordability of electricity. Second, we explore how these preconditions functioned in practice in 2021 by analysing the wider macro-level trends that resulted in the elevated prices throughout Europe, particularly in Finland. Third, we assess the impacts of these trends on Finnish electricity price development. Based on these descriptive and predictive analyses, we show that the European market design fundamentally necessitates price variation to ensure market-based investment and energy security in the long-term. Our analysis demonstrates that the high energy prices in 2021 were, in general, the result of various weather-related, economic, and political factors. Moreover, our findings indicate that the dynamics of price formation within a Member State are complex, and in the case of Finland, strongly impacted by neighbouring markets.

Suggested Citation

  • Jaakko Jääskeläinen & Kaisa Huhta & Sanna Syri, 2022. "The Anatomy of Unaffordable Electricity in Northern Europe in 2021," Energies, MDPI, vol. 15(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7504-:d:939940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jåstad, Eirik Ogner & Trotter, Ian M. & Bolkesjø, Torjus Folsland, 2022. "Long term power prices and renewable energy market values in Norway – A probabilistic approach," Energy Economics, Elsevier, vol. 112(C).
    2. Jaakko J. Jääskeläinen & Sakari Höysniemi & Sanna Syri & Veli-Pekka Tynkkynen, 2018. "Finland’s Dependence on Russian Energy—Mutually Beneficial Trade Relations or an Energy Security Threat?," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    3. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    4. Barabaner, N. I. & Kaganovich, I. Z., 1993. "Oil shale production and power generation in Estonia Economic and environmental dilemmas," Energy Policy, Elsevier, vol. 21(6), pages 703-709, June.
    5. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George E. Halkos & Apostolos S. Tsirivis, 2023. "Electricity Prices in the European Union Region: The Role of Renewable Energy Sources, Key Economic Factors and Market Liberalization," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. Andor, Mark A. & Frondel, Manuel & Schmidt, Christoph M. & Simora, Michael & Sommer, Stephan, 2015. "Klima- und Energiepolitik in Deutschland: Dissens und Konsens," RWI Materialien 91, RWI - Leibniz-Institut für Wirtschaftsforschung.
    3. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    4. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    5. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    6. Pär Holmberg & Robert A. Ritz, 2021. "Optimal Capacity Mechanisms for Competitive Electricity Markets," The Energy Journal, , vol. 42(1_suppl), pages 1-34, June.
    7. Elberg, Christina, 2014. "Cross-Border Effects of Capacity Mechanisms in Electricity Markets," EWI Working Papers 2014-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Growitsch, Christian & Just, Lisa & Pedell, Burkhard, 2014. "Risk Assessment of Investments in Energy-only and Capacity Markets," Die Unternehmung - Swiss Journal of Business Research and Practice, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 68(3), pages 181-188.
    9. Kim, Hyunsook & Kim, Sung-Soo, 2012. "The resource adequacy scheme in the Korean electricity market," Energy Policy, Elsevier, vol. 47(C), pages 133-144.
    10. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    11. David P. Brown & Andrew Eckert, 2018. "Analyzing the Impact of Electricity Market Structure Changes and Mergers: The Importance of Forward Commitments," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(1), pages 101-137, February.
    12. Juha Teirilä and Robert A. Ritz, 2019. "Strategic Behaviour in a Capacity Market? The New Irish Electricity Market Design," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    13. Steggals, Will & Gross, Robert & Heptonstall, Philip, 2011. "Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector," Energy Policy, Elsevier, vol. 39(3), pages 1389-1396, March.
    14. Ochoa, Camila & van Ackere, Ann, 2015. "Winners and losers of market coupling," Energy, Elsevier, vol. 80(C), pages 522-534.
    15. Meyer, Roland & Gore, Olga, 2015. "Cross-border effects of capacity mechanisms: Do uncoordinated market design changes contradict the goals of the European market integration?," Energy Economics, Elsevier, vol. 51(C), pages 9-20.
    16. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    18. Aryani, Morteza & Ahmadian, Mohammad & Sheikh-El-Eslami, Mohammad-Kazem, 2020. "Designing a regulatory tool for coordinated investment in renewable and conventional generation capacities considering market equilibria," Applied Energy, Elsevier, vol. 279(C).
    19. Peter Cramton & Emmanuele Bobbio & David Malec & Pat Sujarittanonta, 2022. "Electricity Markets in Transition: A Multi-Decade Micro-Model of Entry and Exit in Advanced Wholesale Markets," ECONtribute Discussion Papers Series 183, University of Bonn and University of Cologne, Germany.
    20. Hagspiel, Simeon, 2017. "Reliable Electricity: The Effects of System Integration and Cooperative Measures to Make it Work," EWI Working Papers 2017-13, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7504-:d:939940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.