IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v27y2006i3_supplp177-200.html
   My bibliography  Save this article

The Role of Non-CO2 Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century

Author

Listed:
  • Shilpa Rao
  • Keywan Riahi

Abstract

The non-CO2 greenhouse gases have so far jointly contributed around 40 percent to overall global warming. In this paper we examine the role of non-CO2 greenhouse gases in meeting long-term climate change targets. For this purpose, we develop climate mitigation scenarios aimed at achieving long-term stabilization of global radiative forcing. We use the MESSAGE model for a thorough bottom-up representation of the six Kyoto greenhouse gases and corresponding mitigation technologies. This approach endogenizes energy feedback effects from mitigation of non-CO2 gases and takes into account the interplay and side benefits that exist across GHGs. We analyze two mitigation scenarios that stabilize global radiative forcing at 4.5 W/m2 as compared to pre-industrial times—one allowing only for CO2 mitigation and another with multigas mitigation. In addition, we also investigate a lower stabilization level of 3 W/m2 and look into the implications this has for abatement strategies. Our approach helps us to identify a portfolio of measures in the energy, industry and agricultural sectors for achieving a proposed climate target. We find that considering the full basket of GHGs improves the effectiveness of the mitigation portfolio resulting in significantly lower costs, especially in the short term. In the long run, the bulk of the emissions reductions are still found to come from CO2 and this effect becomes more pronounced under the more stringent climate target. This emphasizes the importance of a diverse mitigation portfolio that includes both CO2 and non-CO2 related abatement options in meeting long-term climate targets.

Suggested Citation

  • Shilpa Rao & Keywan Riahi, 2006. "The Role of Non-CO2 Greenhouse Gases in Climate Change Mitigation: Long-term Scenarios for the 21st Century," The Energy Journal, , vol. 27(3_suppl), pages 177-200, December.
  • Handle: RePEc:sae:enejou:v:27:y:2006:i:3_suppl:p:177-200
    DOI: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-9
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-9
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Riahi, Keywan & Rubin, Edward S. & Schrattenholzer, Leo, 2004. "Prospects for carbon capture and sequestration technologies assuming their technological learning," Energy, Elsevier, vol. 29(9), pages 1309-1318.
    2. Alan Manne & Richard Richels, 1992. "Buying Greenhouse Insurance: The Economic Costs of CO2 Emission Limits," MIT Press Books, The MIT Press, edition 1, volume 1, number 026213280x, April.
    3. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    4. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    2. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    3. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, September.
    4. Maryse Labriet & Laurent Drouet & Marc Vielle & Richard Loulou & Amit Kanudia & Alain Haurie, 2015. "Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models," Working Papers 2015.23, Fondazione Eni Enrico Mattei.
    5. Alshammari, Yousef M. & Sarathy, S. Mani, 2017. "Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices," Energy Policy, Elsevier, vol. 101(C), pages 502-511.
    6. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO 2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, September.
    7. Gambhir, Ajay & Schulz, Niels & Napp, Tamaryn & Tong, Danlu & Munuera, Luis & Faist, Mark & Riahi, Keywan, 2013. "A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050," Energy Policy, Elsevier, vol. 59(C), pages 614-632.
    8. Klaassen, Ger & Riahi, Keywan, 2007. "Internalizing externalities of electricity generation: An analysis with MESSAGE-MACRO," Energy Policy, Elsevier, vol. 35(2), pages 815-827, February.
    9. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    10. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    11. Reyer Gerlagh & Bob van der Zwaan & Marjan Hofkes & Ger Klaassen, 2004. "Impacts of CO 2 -Taxes in an Economy with Niche Markets and Learning-by-Doing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 367-394, July.
    12. Hiromi Yamamoto & Masahiro Sugiyama & Junichi Tsutsui, 2014. "Role of end-use technologies in long-term GHG reduction scenarios developed with the BET model," Climatic Change, Springer, vol. 123(3), pages 583-596, April.
    13. Schafer, Andreas & Jacoby, Henry D., 2005. "Technology detail in a multisector CGE model: transport under climate policy," Energy Economics, Elsevier, vol. 27(1), pages 1-24, January.
    14. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    15. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    16. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    17. Baker, Erin, 2005. "Uncertainty and learning in a strategic environment: global climate change," Resource and Energy Economics, Elsevier, vol. 27(1), pages 19-40, January.
    18. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    19. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    20. Rose, Steven K., 2014. "Integrated assessment modeling of climate change adaptation in forestry and pasture land use: A review," Energy Economics, Elsevier, vol. 46(C), pages 548-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:27:y:2006:i:3_suppl:p:177-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.