IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v15y1994i1p31-56.html
   My bibliography  Save this article

The Costs of Stabilizing Global C02 Emissions: A Probabilistic Analysis Based on Expert Judgments

Author

Listed:
  • Alan S. Manne
  • Richard G. Richels

Abstract

In this paper, we examine the economic costs of stabilizing global C02 emissions at 1990 levels. Previous analyses of the costs of emissions abatement have tended to be deterministic. That is, no attempt was made to assign probabilities to various scenarios. Policy-makers need information both on the range of possible outcomes and on their relative likelihood. We use a probability poll to characterize the uncertainty surrounding critical parameters and to construct probability distributions over the outcomes of interest. The analysis suggests a wide range for abatement costs. In order to stabilize global emissions, the annual price tag lies between 0.2 and 6.8 percent of gross world product. This distribution is highly skewed. The expected costs are approximately 1.5 percent.

Suggested Citation

  • Alan S. Manne & Richard G. Richels, 1994. "The Costs of Stabilizing Global C02 Emissions: A Probabilistic Analysis Based on Expert Judgments," The Energy Journal, , vol. 15(1), pages 31-56, January.
  • Handle: RePEc:sae:enejou:v:15:y:1994:i:1:p:31-56
    DOI: 10.5547/ISSN0195-6574-EJ-Vol15-No1-3
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol15-No1-3
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol15-No1-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yuan & Zhang, Junjie & Wang, Can, 2014. "Is China on Track to Comply with Its 2020 Copenhagen Carbon Intensity Commitment?," University of California at San Diego, Economics Working Paper Series qt1r5251g8, Department of Economics, UC San Diego.
    2. Hourcade, Jean-Charles & Chapuis, Thierry, 1995. "No-regret potentials and technical innovation : A viability approach to integrated assessment of climate policies," Energy Policy, Elsevier, vol. 23(4-5), pages 433-445.
    3. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    4. Gjerde, Jon & Grepperud, Sverre & Kverndokk, Snorre, 1999. "Optimal climate policy under the possibility of a catastrophe," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 289-317, August.
    5. Richels, Richard & Sturm, Peter, 1996. "The costs of CO2 emission reductions : Some insights from global analyses," Energy Policy, Elsevier, vol. 24(10-11), pages 875-887.
    6. Richels, Richard & Edmonds, Jae, 1995. "The economics of stabilizing atmospheric CO2 concentrations," Energy Policy, Elsevier, vol. 23(4-5), pages 373-378.
    7. Manne, Alan & Richels, Richard, 1996. "The Berlin Mandate: The costs of meeting post-2000 targets and timetables," Energy Policy, Elsevier, vol. 24(3), pages 205-210, March.
    8. Mort Webster & Nidhi Santen & Panos Parpas, 2012. "An approximate dynamic programming framework for modeling global climate policy under decision-dependent uncertainty," Computational Management Science, Springer, vol. 9(3), pages 339-362, August.
    9. Adrian Cooper & Scott Livermore & Vanessa Rossi & Alan Wilson & John Walker, 1999. "The Economic Implications of Reducing Carbon Emissions," The Energy Journal, , vol. 20(1_suppl), pages 335-365, June.
    10. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    11. Böhringer, Christoph & Jensen, Jesper & Rutherford, Thomas F., 1999. "Energy market projections and differentiated carbon abatement in the European Union," ZEW Discussion Papers 99-11, ZEW - Leibniz Centre for European Economic Research.
    12. Marcucci, Adriana & Panos, Evangelos & Kypreos, Socrates & Fragkos, Panagiotis, 2019. "Probabilistic assessment of realizing the 1.5 °C climate target," Applied Energy, Elsevier, vol. 239(C), pages 239-251.
    13. Jensen, Jesper & Rasmussen, Tobias N., 2000. "Allocation of CO2 Emissions Permits: A General Equilibrium Analysis of Policy Instruments," Journal of Environmental Economics and Management, Elsevier, vol. 40(2), pages 111-136, September.
    14. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    15. Mort Webster, 2009. "Uncertainty and the IPCC. An editorial comment," Climatic Change, Springer, vol. 92(1), pages 37-40, January.
    16. Kram, Tom & Hill, Douglas, 1996. "A multinational model for CO2 reduction : Defining boundaries of future CO2 emissions in nine countries," Energy Policy, Elsevier, vol. 24(1), pages 39-51, January.
    17. Webster, Mort & Cho, Cheol-Hung, 2006. "Analysis of variability and correlation in long-term economic growth rates," Energy Economics, Elsevier, vol. 28(5-6), pages 653-666, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz Estrada, Mario Arturo, 2013. "The Macroeconomics evaluation of Climate Change Model (MECC-Model): The case Study of China," MPRA Paper 49158, University Library of Munich, Germany, revised 18 Aug 2013.
    2. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    3. Pizer, William A., 1999. "The optimal choice of climate change policy in the presence of uncertainty," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 255-287, August.
    4. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    5. Drennen, Thomas E. & Erickson, Jon D. & Chapman, Duane, 1993. "Solar Power and Climate Change Policy in Developing Countries," Staff Papers 121345, Cornell University, Department of Applied Economics and Management.
    6. Tamazian, Artur & Bhaskara Rao, B., 2010. "Do economic, financial and institutional developments matter for environmental degradation? Evidence from transitional economies," Energy Economics, Elsevier, vol. 32(1), pages 137-145, January.
    7. Simonis, Udo E., 1996. "Internationally tradeable emission certificates: efficiency and equity in linking environmental protection with economic development," Discussion Papers, Research Professorship Environmental Policy FS II 96-407, WZB Berlin Social Science Center.
    8. Joseph E. Aldy & Robert N. Stavins, 2021. "Rolling The Dice In The Corridors Of Power: William Nordhaus’S Impacts On Climate Change Policy," World Scientific Book Chapters, in: Robert Mendelsohn (ed.), CLIMATE CHANGE ECONOMICS Commemoration of Nobel Prize for William Nordhaus, chapter 1, pages 1-18, World Scientific Publishing Co. Pte. Ltd..
    9. Yildiz, Özgür, 2014. "Lehren aus der Verhaltensökonomik für die Gestaltung umweltpolitischer Maßnahmen [Lessons from behavioral economics for the design of environmental policy measures]," MPRA Paper 59360, University Library of Munich, Germany.
    10. Haraden, John, 1994. "Rebuttal to “The Marginal Cost of CO2 Emissions”," Energy, Elsevier, vol. 19(12), pages 1263-1266.
    11. Christian Azar, 1999. "Weight Factors in Cost-Benefit Analysis of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 13(3), pages 249-268, April.
    12. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    13. Schmidt, Holger, 1995. "Verteilungseffekte im Klimaschutz-Prozeß," Discussion Papers in Development Economics 18, Justus Liebig University Giessen, Institute for Development Economics.
    14. Roeder, Kerstin & Habla, Wolfgang, 2012. "The Political Sustainability of Germany's Environmental Tax Rate," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62060, Verein für Socialpolitik / German Economic Association.
    15. Mirasgedis, S. & Diakoulaki, D., 1997. "Multicriteria analysis vs. externalities assessment for the comparative evaluation of electricity generation systems," European Journal of Operational Research, Elsevier, vol. 102(2), pages 364-379, October.
    16. Zhongxiang Zhang, 1994. "Setting Targets and the Choice of Policy Instruments for Limiting CO2 Emissions1," Energy & Environment, , vol. 5(4), pages 327-341, December.
    17. Pizer, William, 1997. "Prices vs. Quantities Revisited: The Case of Climate Change," RFF Working Paper Series dp-98-02, Resources for the Future.
    18. Richard Schmalensee, 1993. "Comparing Greenhouse Gases for Policy Purposes," The Energy Journal, , vol. 14(1), pages 245-255, January.
    19. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    20. Asbjørn Aaheim & Rajiv Chaturvedi & Anitha Sagadevan, 2011. "Integrated modelling approaches to analysis of climate change impacts on forests and forest management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(2), pages 247-266, February.

    More about this item

    Keywords

    CO2 emissions; Probabilistic analysis; Abatement costs; climate policy;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:15:y:1994:i:1:p:31-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.