IDEAS home Printed from https://ideas.repec.org/a/sae/ausman/v31y2006i1p29-40.html
   My bibliography  Save this article

Hurdle Rate: Executive Stock Options

Author

Listed:
  • Joe Cheung

    (University of Auckland, New Zealand.)

  • Charles Corrado

    (Department of Commerce, Massey University, Albany, Private Bag 102 904 NSMC, Auckland, New Zealand.)

  • J. B. Chay

    (Sung Kyun Kwan University, Korea.)

  • Do-Sub Jung

    (Sun Moon University, Korea.)

Abstract

Executive stock options with a rising strike price are a recent innovation in executive compensation in Australia and New Zealand. These options combine a dividend protection feature and a strike price that increases at a hurdle rate set with reference to a cost of capital estimate. With a constant dividend yield, the strike price becomes a path-dependent function of the stock price and exact analytic valuation becomes intractable. However, path-dependent American options can be valued using a Monte Carlo approach proposed in Longstaff and Schwartz (2001). We examine procedures for valuing these options and compare them with Black and Scholes (1973) and Merton (1973) formula valuations.

Suggested Citation

  • Joe Cheung & Charles Corrado & J. B. Chay & Do-Sub Jung, 2006. "Hurdle Rate: Executive Stock Options," Australian Journal of Management, Australian School of Business, vol. 31(1), pages 29-40, June.
  • Handle: RePEc:sae:ausman:v:31:y:2006:i:1:p:29-40
    DOI: 10.1177/031289620603100103
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/031289620603100103
    Download Restriction: no

    File URL: https://libkey.io/10.1177/031289620603100103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
    2. Fischer, Stanley, 1978. "Call Option Pricing when the Exercise Price Is Uncertain, and the Valuation of Index Bonds," Journal of Finance, American Finance Association, vol. 33(1), pages 169-176, March.
    3. Christophette Blanchet-Scalliet & Monique Jeanblanc, 2004. "Hazard rate for credit risk and hedging defaultable contingent claims," Finance and Stochastics, Springer, vol. 8(1), pages 145-159, January.
    4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    5. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    6. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamie Alcock & Godfrey Smith, 2017. "Non-parametric American option valuation using Cressie–Read divergences," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 252-275, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    2. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    5. Matthias Berger & Christian Matt & Jochen Gönsch & Thomas Hess, 2019. "Is the Time Ripe? How the Value of Waiting and Incentives Affect Users’ Switching Behaviors for Smart Home Devices," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(1), pages 91-123, February.
    6. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. Pascal Létourneau & Lars Stentoft, 2019. "Bootstrapping the Early Exercise Boundary in the Least-Squares Monte Carlo Method," JRFM, MDPI, vol. 12(4), pages 1-21, December.
    8. Fabozzi, Frank J. & Paletta, Tommaso & Tunaru, Radu, 2017. "An improved least squares Monte Carlo valuation method based on heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 263(2), pages 698-706.
    9. Wei, Wei & Zhu, Dan, 2022. "Generic improvements to least squares monte carlo methods with applications to optimal stopping problems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1132-1144.
    10. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    11. Chen, Ze & Chen, Bingzheng & Dhaene, Jan & Yang, Tianyu, 2021. "Fair dynamic valuation of insurance liabilities via convex hedging," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 1-13.
    12. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, July.
    13. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    14. Barigou, Karim & Chen, Ze & Dhaene, Jan, 2019. "Fair dynamic valuation of insurance liabilities: Merging actuarial judgement with market- and time-consistency," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 19-29.
    15. Marta Biancardi & Giovanni Villani, 2017. "Robust Monte Carlo Method for R&D Real Options Valuation," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 481-498, March.
    16. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Piotr Komański & Oskar Sokoliński, 2015. "Least-Squares Monte Carlo Simulation for Time Value of Options and Guarantees Calculation," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 41.
    18. repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
    19. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.
    20. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    21. Belomestny, Denis & Milstein, Grigori N. & Spokoiny, Vladimir, 2006. "Regression methods in pricing American and Bermudan options using consumption processes," SFB 649 Discussion Papers 2006-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:ausman:v:31:y:2006:i:1:p:29-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.agsm.edu.au .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.