IDEAS home Printed from https://ideas.repec.org/a/rss/jnljef/v4i7p7.html
   My bibliography  Save this article

Models Ability to Predict Bankruptcy Before it Happens

Author

Listed:
  • Mashhour Hathloul Maharmah
  • Esraa Ali Khalil

Abstract

This study aimed to demonstrate the ability of Altman Models (z-score) in predicting and detecting financial difficulties that could lead to liquidation of commercial banks. In order to achieve the objectives of the study Altman (z-score) model is applied as comparative study for a local Jordanian commercial banks (Philadelphia Investment Bank) which was actually liquidated in 2001, in comparing with (Arab Jordanian Investment Bank) which was not liquidate. The period of this study stretch for five years prior to the incident filter, to find out how successful the predictive capacity of the model to give early warning on the probability of failure in the bank for each of those years. The results of the study found that Altman (z-score) model was able (up to 100%), to predict the failure of Philadelphia Investment Bank, especially at the first four years prior to liquidation, where the value of Z within less than (1.81). As for the fifth year it has signed in the medium category (gray area), where the value (Z) greater than (1.81), and less than (2.99), at this point the ability of the model show difficult to assess the situation of the Bank in that year, despite the near financial failure prediction for the fifth year. For Arab Jordanian Investment bank the Altman (z-score) model was able (up to 100%), to predict that the bank is safe from failure, where the value of Z within more than (2.99). The study found a statistically significant relationship between the coefficient of Z and its ability to predict real liquidation of Banks.

Suggested Citation

  • Mashhour Hathloul Maharmah & Esraa Ali Khalil, 2015. "Models Ability to Predict Bankruptcy Before it Happens," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(7), pages 479-491.
  • Handle: RePEc:rss:jnljef:v4i7p7
    as

    Download full text from publisher

    File URL: http://rassweb.org/admin/pages/ResearchPapers/Paper%207_1497102746.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    2. Laitinen, Ek, 1993. "Financial predictors for different phases of the failure process," Omega, Elsevier, vol. 21(2), pages 215-228, March.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    5. Pinches, George E & Mingo, Kent A, 1973. "A Multivariate Analysis of Industrial Bond Ratings," Journal of Finance, American Finance Association, vol. 28(1), pages 1-18, March.
    6. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    7. Beaver, Wh, 1968. "Market Prices, Financial Ratios, And Prediction Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 6(2), pages 179-192.
    8. Horrigan, Jo, 1966. "Determination Of Long-Term Credit Standing With Financial Ratios," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 44-62.
    9. Bruno, Albert V. & Leidecker, Joel K. & Harder, Joseph W., 1987. "Why firms fail," Business Horizons, Elsevier, vol. 30(2), pages 50-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    2. Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.
    3. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    4. Caporale, Guglielmo Maria & Cerrato, Mario & Zhang, Xuan, 2017. "Analysing the determinants of insolvency risk for general insurance firms in the UK," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 107-122.
    5. Stefania Vignini & Tiziana De Cristofaro, 2018. "Impatto della crisi economica su redditivit? e rischio finanziario delle imprese romagnole. Una cluster analysis," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2018(3), pages 157-181.
    6. Chien-Min Kang & Ming-Chieh Wang & Lin Lin, 2022. "Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions," IJFS, MDPI, vol. 10(2), pages 1-25, April.
    7. Elizabeth Gutierrez & Jake Krupa & Miguel Minutti-Meza & Maria Vulcheva, 2020. "Do going concern opinions provide incremental information to predict corporate defaults?," Review of Accounting Studies, Springer, vol. 25(4), pages 1344-1381, December.
    8. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    9. Khushbu Agrawal, 2015. "Default Prediction Using Piotroski’s F-score," Global Business Review, International Management Institute, vol. 16(5_suppl), pages 175-186, October.
    10. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    11. Manzoni, Katiuscia, 2004. "Modeling Eurobond credit ratings and forecasting downgrade probability," International Review of Financial Analysis, Elsevier, vol. 13(3), pages 277-300.
    12. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    13. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    14. Dong, Manh Cuong & Tian, Shaonan & Chen, Cathy W.S., 2018. "Predicting failure risk using financial ratios: Quantile hazard model approach," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 204-220.
    15. Manzaneque, Montserrat & Priego, Alba María & Merino, Elena, 2016. "Corporate governance effect on financial distress likelihood: Evidence from Spain," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 111-121.
    16. Van Laere, Elisabeth & Baesens, Bart, 2010. "The development of a simple and intuitive rating system under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 500-510, June.
    17. Ha Nguyen, 2023. "Particle MCMC in forecasting frailty correlated default models with expert opinion," Papers 2304.11586, arXiv.org, revised Aug 2023.
    18. Zhang, Xuan & Zhao, Yang & Yao, Xiao, 2022. "Forecasting corporate default risk in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1054-1070.
    19. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    20. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rss:jnljef:v4i7p7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Danish Khalil (email available below). General contact details of provider: http://www.rassweb.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.