IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2022i1p68-84.html
   My bibliography  Save this article

Joint Modelling of S&P500 and VIX Indices with Rough Fractional Ornstein-Uhlenbeck Volatility Model

Author

Listed:
  • Ömer ÖNALAN

    (Marmara University, Faculty of Business Administration)

Abstract

In this paper, we study the joint modelling problem of S&P500 and VIX indices, under rough volatility dynamics by a stochastic model with continuous paths. Our aim is to improve the future values’ forecast of S&P500 index using the VIX index estimates. The present study is built on the estimation with the rough volatility models of the noise component which is included in financial models. The main stylized facts of the volatility can be captured well by fractional Brownian motions with a Hurst index, lower than 0.5. The H parameter governs the realized volatility roughness of time series. In the rough volatility approach, the Hurst exponent H is estimated by using the scaling properties of the volatility series. We describe the log-volatility of S&P500 index using a rough fractional Ornstein-Uhlenbeck model. The VIX index is a measure of the market’s expected volatility on the S&P 500 Index. When the rBergomi model is empirically calibrated to daily data of the proxy, realized volatility and the VIX index, it is found that the VIX index is rough with H

Suggested Citation

  • Ömer ÖNALAN, 2022. "Joint Modelling of S&P500 and VIX Indices with Rough Fractional Ornstein-Uhlenbeck Volatility Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 68-84, April.
  • Handle: RePEc:rjr:romjef:v::y:2022:i:1:p:68-84
    as

    Download full text from publisher

    File URL: https://www.ipe.ro/rjef/rjef1_2022/rjef1_2022p68-84.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    2. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    3. Raúl Merino & Jan Pospíšil & Tomáš Sobotka & Tommi Sottinen & Josep Vives, 2021. "Decomposition Formula For Rough Volterra Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-47, March.
    4. Christian Bayer & Chiheb Ben Hammouda & Raúl Tempone, 2020. "Hierarchical adaptive sparse grids and quasi-Monte Carlo for option pricing under the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1457-1473, September.
    5. F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
    6. Kaeck, Andreas & Alexander, Carol, 2013. "Continuous-time VIX dynamics: On the role of stochastic volatility of volatility," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 46-56.
    7. Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2018. "Hierarchical adaptive sparse grids and quasi Monte Carlo for option pricing under the rough Bergomi model," Papers 1812.08533, arXiv.org, revised Jan 2020.
    8. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    9. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    10. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    2. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
    3. Khalifa Es-Sebaiy & Mohammed Es.Sebaiy, 2021. "Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 409-436, June.
    4. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    5. Jingtang Ma & Wensheng Yang & Zhenyu Cui, 2021. "Semimartingale and continuous-time Markov chain approximation for rough stochastic local volatility models," Papers 2110.08320, arXiv.org, revised Oct 2021.
    6. Jan Matas & Jan Posp'iv{s}il, 2021. "Robustness and sensitivity analyses for rough Volterra stochastic volatility models," Papers 2107.12462, arXiv.org, revised Jun 2023.
    7. Li, Yicun & Teng, Yuanyang, 2023. "Statistical inference in discretely observed fractional Ornstein–Uhlenbeck processes," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Ofelia Bonesini & Giorgia Callegaro & Antoine Jacquier, 2021. "Functional quantization of rough volatility and applications to volatility derivatives," Papers 2104.04233, arXiv.org, revised Mar 2024.
    9. Hongkai Cao & Alexandru Badescu & Zhenyu Cui & Sarath Kumar Jayaraman, 2020. "Valuation of VIX and target volatility options with affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(12), pages 1880-1917, December.
    10. Jan Matas & Jan Posp'iv{s}il, 2021. "On simulation of rough Volterra stochastic volatility models," Papers 2108.01999, arXiv.org, revised Aug 2022.
    11. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    12. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    13. Martin Keller-Ressel & Martin Larsson & Sergio Pulido, 2018. "Affine Rough Models," Papers 1812.08486, arXiv.org.
    14. Peter K. Friz & Paul Gassiat & Paolo Pigato, 2022. "Short-dated smile under rough volatility: asymptotics and numerics," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 463-480, March.
    15. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    16. Florian Bourgey & Stefano De Marco & Peter K. Friz & Paolo Pigato, 2023. "Local volatility under rough volatility," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1119-1145, October.
    17. repec:uts:finphd:41 is not listed on IDEAS
    18. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    19. Wang, Jixia & Xiao, Xiaofang & Li, Chao, 2023. "Least squares estimations for approximate fractional Vasicek model driven by a semimartingale," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 207-218.
    20. Alòs, Elisa & Antonelli, Fabio & Ramponi, Alessandro & Scarlatti, Sergio, 2023. "CVA in fractional and rough volatility models," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    21. Bu, Ruijun & Hadri, Kaddour & Kristensen, Dennis, 2021. "Diffusion copulas: Identification and estimation," Journal of Econometrics, Elsevier, vol. 221(2), pages 616-643.

    More about this item

    Keywords

    rough volatility; fractional Ornstein-Uhlenbeck process; volatility estimation; rBergomi model; S&P500 price model;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2022:i:1:p:68-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.