IDEAS home Printed from https://ideas.repec.org/a/ris/arhuss/0058.html
   My bibliography  Save this article

Circular Economy Practices In Turkey And Their Potential Interaction With Climate Change Mitigation And Adaptation

Author

Listed:
  • Özuyar, Pınar

    (İstinye Üniversitesi)

Abstract

Circular economy is the wise use of all resources, especially natural resources, while increasing efficiency as well as reducing waste. As the circular economy serves the requirements of corporate social responsibility, it has become a prevalent approach in recent years and has begun to be included in the strategies and statements of corporations. However, while being clearly expressed as a concept, when it comes to actual implementation, circular economy practices cannot be listed down in a comprehensive way and corporations are usually faced with uncertainty in this regard. In line with its global development, corporations in Turkey have started to utter the word more frequently. This study looks into that already existing circular economy methods in Turkey and discusses their potential impact. These are namely, organized industrial zones, industrial zones and others as clusters, free trade zones, Techno Parks and industrial symbiosis examples. Furthermore, the afore listed tools of circular economy are discussed based on their potential in respect to near future sector-based implications of increasing focus on climate change.

Suggested Citation

  • Özuyar, Pınar, 2021. "Circular Economy Practices In Turkey And Their Potential Interaction With Climate Change Mitigation And Adaptation," Academic Review of Humanities and Social Sciences, Bursa Teknik Üniversitesi, vol. 4(1), pages 18-32.
  • Handle: RePEc:ris:arhuss:0058
    as

    Download full text from publisher

    File URL: https://dergipark.org.tr/tr/download/article-file/1652567
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dursun, Mehtap & Goker, Nazli & Tulek, Burcu Deniz, 2019. "Efficiency analysis of organized industrial zones in Eastern Black Sea Region of Turkey," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    2. Butturi, M.A. & Lolli, F. & Sellitto, M.A. & Balugani, E. & Gamberini, R. & Rimini, B., 2019. "Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis," Applied Energy, Elsevier, vol. 255(C).
    3. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    2. Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    3. Diogo Ferraz & Fernanda P. S. Falguera & Enzo B. Mariano & Dominik Hartmann, 2021. "Linking Economic Complexity, Diversification, and Industrial Policy with Sustainable Development: A Structured Literature Review," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    4. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    5. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    6. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    7. Mughees, Neelam & Jaffery, Mujtaba Hussain & Mughees, Anam & Ansari, Ejaz Ahmad & Mughees, Abdullah, 2023. "Reinforcement learning-based composite differential evolution for integrated demand response scheme in industrial microgrids," Applied Energy, Elsevier, vol. 342(C).
    8. Eleonora Annunziata & Francesco Rizzi & Tiberio Daddi & Marco Frey, 2019. "Business models for interfirm energy cooperation in industrial parks: A possible taxonomy," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 133-148.
    9. Tran Thu Trang & Simon R. Bush & Judith van Leeuwen, 2023. "Enhancing institutional capacity in a centralized state: The case of industrial water use efficiency in Vietnam," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 210-222, February.
    10. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    11. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability, Springer, vol. 1(2), pages 507-523, September.
    12. Yafen He & Zhenhong Zhu & Hualin Xie & Xinmin Zhang & Meiqi Sheng, 2023. "A case study in China of the influence mechanism of industrial park efficiency using DEA," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7261-7280, July.
    13. Doryn Negesa & Wei Cong & Lei Cheng & Lei Shi, 2022. "Development of eco‐industrial parks in Ethiopia: The case of Hawassa Industrial Park," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1078-1093, June.
    14. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    15. Hwangbo, Soonho & Heo, SungKu & Yoo, ChangKyoo, 2022. "Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: Towards decarbonization petrochemical industry," Energy, Elsevier, vol. 238(PC).
    16. Navid Shirzadi & Fuzhan Nasiri & Ursula Eicker, 2020. "Optimal Configuration and Sizing of an Integrated Renewable Energy System for Isolated and Grid-Connected Microgrids: The Case of an Urban University Campus," Energies, MDPI, vol. 13(14), pages 1-18, July.
    17. Anna Gatzioura & Miquel Sànchez-Marrè & Karina Gibert, 2019. "A Hybrid Recommender System to Improve Circular Economy in Industrial Symbiotic Networks," Energies, MDPI, vol. 12(18), pages 1-24, September.
    18. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    19. Fortuna, Lorena M. & Diyamandoglu, Vasil, 2015. "NYC WasteMatch – An online facilitated materials exchange as a tool for pollution prevention," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 122-131.
    20. Yuan Yuan & Xintong Sun & Ning Liu, 2022. "Measuring structural characteristics and evolutionary patterns of an industrial carbon footprint network: A social network analysis approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(S2), pages 159-180, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:arhuss:0058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cevat Bilgin (email available below). General contact details of provider: http://itbf.btu.edu.tr/index.php .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.