IDEAS home Printed from https://ideas.repec.org/a/ris/actuec/v80y2004i4p593-618.html
   My bibliography  Save this article

Méthodes d’inférence exactes pour un modèle de régression avec erreurs AR(2) gaussiennes

Author

Listed:
  • Dufour, Jean-Marie

    (Université de Montréal)

  • Neifar, Malika

    (Institut Supérieur de Gestion de Sousse)

Abstract

In this paper, we consider a linear regression model with Gaussian autoregressive errors of order p = 2, which may be nonstationary. Exact inference methods (tests and confidence regions) are developed for the autoregressive parameters and the regression coefficients. We generalize the method proposed in Dufour (1990) for linear regression models with autoregressive errors of order p = 1. The proposed approach consists in three stages. First, we build an exact confidence set for the complete vector of the autoregressive coefficients (φ). This region is obtained by inverting independence tests for model errors after the model has been transformed to get independent errors under the null hypothesis. The independence tests are based on combining tests for the presence of autocorrelation at lags one and two. Exploiting the duality between tests and confidence sets, an exact confidence set is then built by finding the set of autoregressive parameter values which are not rejected (test inversion). Second, using this confidence set for φ, simultaneous confidence sets for the autoregressive parameters and regression coefficients are obtained. Finally, marginal confidence intervals for the regression coefficients are derived using a projection approach. We also propose generalized bounds tests for the regression parameters. These methods are applied to time series models of the U.S. money stock (M2) and GNP deflator. Ce texte propose des méthodes d’inférence exactes (tests et régions de confiance) sur des modèles de régression linéaires avec erreurs autocorrélées suivant un processus autorégressif d’ordre deux [AR(2)], qui peut être non stationnaire. L’approche proposée est une généralisation de celle décrite dans Dufour (1990) pour un modèle de régression avec erreurs AR(1) et comporte trois étapes. Premièrement, on construit une région de confiance exacte pour le vecteur des coefficients du processus autorégressif (φ). Cette région est obtenue par inversion de tests d’indépendance des erreurs sur une forme transformée du modèle contre des alternatives de dépendance aux délais un et deux. Deuxièmement, en exploitant la dualité entre tests et régions de confiance (inversion de tests), on détermine une région de confiance conjointe pour le vecteur φ et un vecteur d’intérêt γ de combinaisons linéaires des coefficients de régression du modèle. Troisièmement, par une méthode de projection, on obtient des intervalles de confiance « marginaux » ainsi que des tests à bornes exacts pour les composantes de γ. Ces méthodes sont appliquées à des modèles du stock de monnaie (M2) et du niveau des prix (indice implicite du PNB) américains.

Suggested Citation

  • Dufour, Jean-Marie & Neifar, Malika, 2004. "Méthodes d’inférence exactes pour un modèle de régression avec erreurs AR(2) gaussiennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(4), pages 593-618, Décembre.
  • Handle: RePEc:ris:actuec:v:80:y:2004:i:4:p:593-618
    as

    Download full text from publisher

    File URL: http://id.erudit.org/iderudit/012129ar
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ansley, Craig F. & Kohn, Robert & Shively, Thomas S., 1992. "Computing p-values for the generalized Durbin-Watson and other invariant test statistics," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 277-300.
    2. King, Maxwell L., 1985. "A point optimal test for autoregressive disturbances," Journal of Econometrics, Elsevier, vol. 27(1), pages 21-37, January.
    3. R. W. Farebrother, 1984. "A Remark on Algorithms as 106, as 153 and as 155 the Distribution of a Linear Combination of X2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(3), pages 366-369, November.
    4. DeJong, David N. & Nankervis, John C. & Savin, N. E. & Whiteman, Charles H., 1992. "The power problems of unit root test in time series with autoregressive errors," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 323-343.
    5. Savin, N.E., 1984. "Multiple hypothesis testing," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 14, pages 827-879, Elsevier.
    6. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    7. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-494, March.
    8. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    9. Miyazaki, Shigetaka & Griffiths, William E., 1984. "The properties of some covariance matrix estimators in linear models with AR(1) errors," Economics Letters, Elsevier, vol. 14(4), pages 351-356.
    10. Jean-Marie Dufour & Jan F. Kiviet, 1998. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Econometrica, Econometric Society, vol. 66(1), pages 79-104, January.
    11. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
    12. Wallis, Kenneth F, 1972. "Testing for Fourth Order Autocorrelation in Qtrly Regression Equations," Econometrica, Econometric Society, vol. 40(4), pages 617-636, July.
    13. Nankervis, J. C. & Savin, N. E., 1985. "Testing the autoregressive parameter with the t statistic," Journal of Econometrics, Elsevier, vol. 27(2), pages 143-161, February.
    14. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    15. King, M. L., 1981. "The alternative Durbin-Watson test : An assessment of Durbin and Watson's choice of test statistic," Journal of Econometrics, Elsevier, vol. 17(1), pages 51-66, September.
    16. Park, Rolla Edward & Mitchell, Bridger M., 1980. "Estimating the autocorrelated error model with trended data," Journal of Econometrics, Elsevier, vol. 13(2), pages 185-201, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufour, Jean-Marie & Torres, Olivier, 2000. "Markovian processes, two-sided autoregressions and finite-sample inference for stationary and nonstationary autoregressive processes," Journal of Econometrics, Elsevier, vol. 99(2), pages 255-289, December.
    2. Dufour, Jean-Marie & Neifar, Malika, 2002. "Méthodes d’inférence exactes pour des processus autorégressifs : une approche fondée sur des tests induits," L'Actualité Economique, Société Canadienne de Science Economique, vol. 78(1), pages 19-40, Mars.
    3. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    4. Dufour, Jean-Marie & Farhat, Abdeljelil & Hallin, Marc, 2006. "Distribution-free bounds for serial correlation coefficients in heteroskedastic symmetric time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 123-142, January.
    5. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    6. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    7. Jean-Marie Dufour & Lynda Khalaf & Marie-Claude Beaulieu, 2010. "Multivariate residual-based finite-sample tests for serial dependence and ARCH effects with applications to asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 263-285.
    8. René Lalonde & Jennifer Page & Pierre St-Amant, 1998. "Une nouvelle méthode d'estimation de l'écart de production et son application aux États-Unis, au Canada et à l'Allemagne," Staff Working Papers 98-21, Bank of Canada.
    9. Kiviet, Jan F. & Dufour, Jean-Marie, 1997. "Exact tests in single equation autoregressive distributed lag models," Journal of Econometrics, Elsevier, vol. 80(2), pages 325-353, October.
    10. Foster, Neil & Stehrer, Robert, 2007. "Modeling transformation in CEECs using smooth transitions," Journal of Comparative Economics, Elsevier, vol. 35(1), pages 57-86, March.
    11. Luger, Richard, 2003. "Exact non-parametric tests for a random walk with unknown drift under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 115(2), pages 259-276, August.
    12. Dufour, Jean-Marie & Khalaf, Lynda, 2002. "Exact tests for contemporaneous correlation of disturbances in seemingly unrelated regressions," Journal of Econometrics, Elsevier, vol. 106(1), pages 143-170, January.
    13. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
    14. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    15. Zeng-Hua Lu & Maxwell King, 2002. "Improving The Numerical Technique For Computing The Accumulated Distribution Of A Quadratic Form In Normal Variables," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 149-165.
    16. Wan, Alan T.K. & Zou, Guohua & Banerjee, Anurag, 2007. "The power of autocorrelation tests near the unit root in models with possibly mis-specified linear restrictions," Economics Letters, Elsevier, vol. 94(2), pages 213-219, February.
    17. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    18. Philip A. Shively, 2001. "Trend-stationary GNP: evidence from a new exact pointwise most powerful invariant unit root test," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 537-551.
    19. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    20. Wan, Alan & Zou, Guohua & Banerjee, Anurag, 2004. "The limiting power of autocorrelation tests in regression models with linear restrictions," Discussion Paper Series In Economics And Econometrics 405, Economics Division, School of Social Sciences, University of Southampton.

    More about this item

    JEL classification:

    • M2 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics
    • M2 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:80:y:2004:i:4:p:593-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Dostie (email available below). General contact details of provider: https://edirc.repec.org/data/scseeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.