IDEAS home Printed from https://ideas.repec.org/a/ris/actuec/v73y1997i1p507-523.html
   My bibliography  Save this article

L’estimation de modèles de régression linéaire autorégressifs avec erreurs résiduelles autocorrélées et erreurs sur les variables

Author

Listed:
  • Dagenais, Marcel G.

    (Centre de recherche et développement en économique (C.R.D.E.), Département de sciences économiques, Université de Montréal)

  • Dagenais, Denyse L.

    (Institut d’économie appliquée, École des Hautes Études Commerciales, Montréal)

Abstract

This paper presents, for models based on time series data, a method of estimation to take into account errors in the variables, when these errors are not autocorrelated. The suggested approach utilizes shifted values of the independent variables as instruments. We use Fuller's (1987) consistent estimator and compare analytically the mean squared errors of this estimator with those of a similar estimator which would ignore the presence of errors in the variables. Finally, from Monte-Carlo studies based on samples of 150 observations, we evaluate the relative performance of the above estimators as well as that of an alternative estimator which is a weighted sum of the first two. Our experiments show that the alternative estimator appears to behave relatively better. They also indicate that the inconveniences associated with the presence of errors in the variables is not only to bias the parameter estimators or to increase their mean squared errors but also to underestimate notably the size of the type I errors of significance tests. Nous présentons, pour des modèles de séries chronologiques, une méthode d’estimation qui tient compte de la présence d’erreurs de mesure sur les données, lorsque ces erreurs ne sont pas autocorrélées. L’approche suggérée utilise des valeurs décalées des variables indépendantes comme variables instrumentales. Nous employons l’estimateur convergent proposé par Fuller (1987) et comparons analytiquement les erreurs quadratiques moyennes de cet estimateur avec celles d’un estimateur similaire qui ne tiendrait pas compte des erreurs de mesure. Finalement, nous rapportons, à partir d’un échantillon de 150 observations, les résultats d’études de Monte Carlo sur ces deux estimateurs ainsi que sur un estimateur alternatif qui est une somme pondérée des deux premiers. Ces expériences montrent que l’estimateur alternatif semble relativement mieux se comporter. On constate également que l’inconvénient de la présence d’erreurs sur les variables n’est pas seulement de biaiser les estimateurs des coefficients ou d’accroître les erreurs quadratiques moyennes, mais également de sous-estimer considérablement le niveau des erreurs de type I des tests de signification.

Suggested Citation

  • Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "L’estimation de modèles de régression linéaire autorégressifs avec erreurs résiduelles autocorrélées et erreurs sur les variables," L'Actualité Economique, Société Canadienne de Science Economique, vol. 73(1), pages 507-523, mars-juin.
  • Handle: RePEc:ris:actuec:v:73:y:1997:i:1:p:507-523
    as

    Download full text from publisher

    File URL: http://id.erudit.org/iderudit/602237ar
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dagenais, Marcel G., 1994. "Parameter estimation in regression models with errors in the variables and autocorrelated disturbances," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 145-163.
    2. Joseph G. Altonji & Aloysius Siow, 1987. "Testing the Response of Consumption to Income Changes with (Noisy) Panel Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(2), pages 293-328.
    3. Marcel G. Dagenais, 1992. "Measuring Personal Savings, Consumption, and Disposable Income in Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 25(3), pages 681-707, August.
    4. Pal, Manoranjan, 1980. "Consistent moment estimators of regression coefficients in the presence of errors in variables," Journal of Econometrics, Elsevier, vol. 14(3), pages 349-364, December.
    5. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denyse L. Dagenais & Marcel Dagenais, 1995. "Higher Moment Estimators for Linear Regression Models With Errors in the Variables," CIRANO Working Papers 95s-13, CIRANO.
    2. Dagenais, Marcel G. & Dagenais, Denyse L., 1997. "Higher moment estimators for linear regression models with errors in the variables," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 193-221.
    3. Coën, Alain & Hübner, Georges, 2009. "Risk and performance estimation in hedge funds revisited: Evidence from errors in variables," Journal of Empirical Finance, Elsevier, vol. 16(1), pages 112-125, January.
    4. Alain Coen & Francois-Éric Racicot, 2006. "A New Approach Based on Cumulants for Estimating Financial Regression Models with Errors in the Variables: the Fama and French Model Revisited," RePAd Working Paper Series UQO-DSA-wp142006, Département des sciences administratives, UQO.
    5. Jean-Louis ARCAND & Marcel DAGENAIS, 2005. "Errors in Variables and the Empirics of Economic Growth," Working Papers 200536, CERDI.
    6. Francois-Éric Racicot & Raymond Théoret & Alain Coen, 2006. "Towards New Empirical Versions of Financial and Accounting Models Corrected for Measurement Errors," RePAd Working Paper Series UQO-DSA-wp132006, Département des sciences administratives, UQO.
    7. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    8. Susanne M. Schennach & Yingyao Hu & Arthur Lewbel, 2007. "Nonparametric identification of the classical errors-in-variables model without side information," Boston College Working Papers in Economics 674, Boston College Department of Economics.
    9. Coen, Alain & Racicot, Francois-Eric, 2007. "Capital asset pricing models revisited: Evidence from errors in variables," Economics Letters, Elsevier, vol. 95(3), pages 443-450, June.
    10. Yang, Fan & Havranek, Tomas & Irsova, Zuzana & Novak, Jiri, 2022. "Hedge Fund Performance: A Quantitative Survey," EconStor Preprints 260612, ZBW - Leibniz Information Centre for Economics.
    11. repec:kap:iaecre:v:15:y:2009:i:1:p:30-43 is not listed on IDEAS
    12. Erickson, Timothy & Jiang, Colin Huan & Whited, Toni M., 2014. "Minimum distance estimation of the errors-in-variables model using linear cumulant equations," Journal of Econometrics, Elsevier, vol. 183(2), pages 211-221.
    13. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    14. Erkin Diyarbakirlioglu & Marc Desban & Souad Lajili Jarjir, 2022. "Asset pricing models with measurement error problems: A new framework with Compact Genetic Algorithms," Post-Print hal-03643083, HAL.
    15. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.
    16. François-Éric Racicot & Raymond Théoret, 2009. "Integrating volatility factors in the analysis of the hedge fund alpha puzzle," Journal of Asset Management, Palgrave Macmillan, vol. 10(1), pages 37-62, April.
    17. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    18. Racicot, François-Éric & Rentz, William F., 2018. "Does Illiquidity Matter? An Errors-in-Variables Perspective/¿Es importante la iliquidez? Un análisis desde el enfoque de errores en variables," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 36, pages 251-262, Enero.
    19. Laurent Bodson & Alain Coën & Georges Hübner, 2010. "Dynamic Hedge Fund Style Analysis With Errors‐In‐Variables," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(3), pages 201-221, September.
    20. Gospodinov, Nikolay & Komunjer, Ivana & Ng, Serena, 2017. "Simulated minimum distance estimation of dynamic models with errors-in-variables," Journal of Econometrics, Elsevier, vol. 200(2), pages 181-193.
    21. Christian Calmès & Denis Cormier & Francois Éric Racicot & Raymond Théoret, 2012. "Firms' Accruals and Tobin’s q," RePAd Working Paper Series UQO-DSA-wp032012, Département des sciences administratives, UQO.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:73:y:1997:i:1:p:507-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Dostie (email available below). General contact details of provider: https://edirc.repec.org/data/scseeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.