IDEAS home Printed from https://ideas.repec.org/a/ris/actuec/v66y1990i2p218-230.html
   My bibliography  Save this article

L’annualisation des chiffres d’exercices financiers

Author

Listed:
  • Cholette, Pierre A.

    (Statistique Canada)

Abstract

A very common procedure to convert fiscal year data into calendar year values consists of setting the calendar year estimate equal to a fraction (e.g. 1/4) of one fiscal year value plus a complementary fraction (e.g. 3/4) of the next fiscal value. For instance if the fiscal year ends in March, the 1987 estimate (say) is equal to 1/4 of the 1986-87 fiscal value plus 3/4 of the 1987-88 value. According to this paper, this procedure is satisfactory only for fiscal data which display uninterrupted growth. Indeed if the fiscal data change direction or even level-off, the procedure implies a very unlikely behaviour of the underlying trend-cycle component. This in turn complicates business cycle analysis, decision making and macro-economic management. The paper compares the procedure to a method recently developed by Cholette and Baldwin (1989). The method is essentially an adaptation of the methods used for benchmarking, that is for adjusting sub-annual series to yearly benchmarks (Denton, 1971; Bournay and Laroque, 1979); and an adaption of the methods used for interpolating between calendar year values (Boot, Feibes and Lisman, 1967). Une façon répandue de transformer des chiffres d’exercices financiers en estimations d’année civile consiste à considérer l’estimation civile comme une fraction (par exemple 1/4) d’un chiffre financier et d’une fraction complémentaire (3/4) du chiffre financier suivant. À titre d’exemple, si l’année financière se termine en mars, l’estimation de 1987, disons, est l’addition des deux chiffres suivants : 1/4 du chiffre de 1986-87 et 3/4 du chiffre de 1987-88. Selon le présent article, ce procédé est acceptable seulement si les chiffres financiers sont en hausse (ou en baisse) ininterrompue. En effet, en cas de changement de direction — et même de plafonnement — des chiffres financiers, le procédé implique un comportement invraisemblable de la composante conjoncturelle sous-jacente. Ceci complique l’analyse conjoncturelle, la prise de décision et la gestion macro-économique. L’article compare le procédé à une méthode récemment mise au point par Cholette et Baldwin (1989). Cette dernière est essentiellement une adaptation des méthodes utilisées pour l’étalonnage, c’est-à-dire pour l’ajustement de séries infra-annuelles à des jalons annuels (Denton, 1971; Bournay et Laroque, 1979); de même qu’une adaptation des méthodes utilisées pour l’interpolation entre valeurs annuelles civiles (Boot, Feibes et Lisman, 1967).

Suggested Citation

  • Cholette, Pierre A., 1990. "L’annualisation des chiffres d’exercices financiers," L'Actualité Economique, Société Canadienne de Science Economique, vol. 66(2), pages 218-230, juin.
  • Handle: RePEc:ris:actuec:v:66:y:1990:i:2:p:218-230
    as

    Download full text from publisher

    File URL: http://id.erudit.org/iderudit/601529ar
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    2. Kalman J. Cohen & Wolfgang Müller & Manfred W. Padberg, 1971. "Autoregressive Approaches to Disaggregation of Time Series Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 20(2), pages 119-129, June.
    3. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Eaton & Samuel Kortum & Brent Neiman & John Romalis, 2016. "Trade and the Global Recession," American Economic Review, American Economic Association, vol. 106(11), pages 3401-3438, November.
    2. Campbell Leith & Jim Malley, 2007. "A Sectoral Analysis of Price-Setting Behavior in U.S. Manufacturing Industries," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 335-342, May.
    3. Massimo Gerli & Giovanni Marini, 2006. "Spatial and Temporal Time Series Conversion: A Consistent Estimator of the Error Variance-Covariance Matrix," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 373-405.
    4. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    5. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    6. Kim Abildgren, 2016. "A century of macro-financial linkages," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 8(4), pages 458-471, November.
    7. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    8. Richard M. Todd, 1988. "Implementing Bayesian vector autoregressions," Working Papers 384, Federal Reserve Bank of Minneapolis.
    9. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    10. Pieroni, Luca & d'Agostino, Giorgio & Lorusso, Marco, 2008. "Can we declare military Keynesianism dead?," Journal of Policy Modeling, Elsevier, vol. 30(5), pages 675-691.
    11. Cuevas Ángel & Quilis Enrique M. & Espasa Antoni, 2015. "Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking," Journal of Official Statistics, Sciendo, vol. 31(4), pages 627-647, December.
    12. Tommaso Proietti, 2004. "On the Estimation of Nonlinearly Aggregated Mixed Models," Econometrics 0411012, University Library of Munich, Germany.
    13. Tommaso Proietti, 2011. "Multivariate temporal disaggregation with cross-sectional constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1455-1466, June.
    14. Bernardí Cabred & Jose Pavía, 1999. "EstimatingJ (>1) quarterly time series in fulfilling annual and quarterly constraints," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 339-349, August.
    15. Travaglini, Guido, 2010. "Supervised Principal Components and Factor Instrumental Variables. An Application to Violent CrimeTrends in the US, 1982-2005," MPRA Paper 22077, University Library of Munich, Germany.
    16. Jürgen Bierbaumer & Sandra Bilek-Steindl, 2017. "Quarterly National Accounts – Manual for Austria. Description of Applied Methods and Data Sources," WIFO Studies, WIFO, number 60427.
    17. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    18. Higgins, Patrick & Zha, Tao & Zhong, Wenna, 2016. "Forecasting China's economic growth and inflation," China Economic Review, Elsevier, vol. 41(C), pages 46-61.
    19. Wolfgang Polasek & Richard Sellner, 2008. "Spatial Chow-Lin Methods: Bayesian And Ml Forecast Comparisons," Working Paper series 38_08, Rimini Centre for Economic Analysis.
    20. Wenzel, Lars & Wolf, André, 2013. "Short-term forecasting with business surveys: Evidence for German IHK data at federal state level," HWWI Research Papers 140, Hamburg Institute of International Economics (HWWI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:66:y:1990:i:2:p:218-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Dostie (email available below). General contact details of provider: https://edirc.repec.org/data/scseeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.