IDEAS home Printed from https://ideas.repec.org/a/rfh/bbejor/v13y2024i3p30-35.html
   My bibliography  Save this article

Striking a Balance: Evaluating Credit Risk with Traditional and Machine Learning Models

Author

Listed:
  • Faraz Ahmed

    (PhD Scholar, Department of Business Administration, IQRA University, Karachi, Pakistan)

  • Kehkashan Nizam

    (PhD Scholar, Department of Business Administration, IQRA University, Karachi, Pakistan)

  • Zubair Sajid

    (Lecturer, Department of Computer Science, IQRA University, Karachi, Pakistan)

  • Sunain Qamar

    (MBA, Department of Management Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology University, Karachi, Pakistan)

  • Ahsan

    (Lecturer, Department of Commerce, Benazir Bhutto Shaheed University, Lyari, Karachi, Pakistan)

Abstract

This research assesses machine learning models' validity, clarity, and equity, compared to classical models and especially logistic regression in credit risk evaluation. In the traditional model of data management, efficiency and the accuracy of information are challenges; an issue of machine learning models is model selection and multicollinearity. The study intends to help financial institutions establish the best strategy for their needs. Furthermore, it delves into the effect of heterogeneous data sources on the credit risk model using machine learning. The research analyses the implications of using machine learning in assessing credit risk. Interestingly, focusing on peer-to-peer lending platforms, the research aims to deal with the need for more attention to combining machine learning and traditional models in the literature. The deductive method is the application of inferential analyses, the Traditional model is logistic regression, and the Machine Learning model is a neural network (CNN model) based on secondary data from the Kaggle peer-to-peer lending dataset. With likely findings expected to comprise prediction of the probability of default and better availability of loans, risk analysis leads to formulated lending decisions managing a financial portfolio.

Suggested Citation

  • Faraz Ahmed & Kehkashan Nizam & Zubair Sajid & Sunain Qamar & Ahsan, 2024. "Striking a Balance: Evaluating Credit Risk with Traditional and Machine Learning Models," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(3), pages 30-35.
  • Handle: RePEc:rfh:bbejor:v:13:y:2024:i:3:p:30-35
    DOI: https://doi.org/10.61506/01.00425
    as

    Download full text from publisher

    File URL: https://bbejournal.com/BBE/article/view/942/995
    Download Restriction: no

    File URL: https://bbejournal.com/BBE/article/view/942
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.61506/01.00425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. S. Naik, 2021. "Predicting Credit Risk for Unsecured Lending: A Machine Learning Approach," Papers 2110.02206, arXiv.org.
    2. Ahmed Almustfa Hussin Adam Khatir & Marco Bee, 2022. "Machine Learning Models and Data-Balancing Techniques for Credit Scoring: What Is the Best Combination?," Risks, MDPI, vol. 10(9), pages 1-22, August.
    3. Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    4. Andrés Alonso & José Manuel Carbó, 2020. "Machine learning in credit risk: measuring the dilemma between prediction and supervisory cost," Working Papers 2032, Banco de España.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
    2. González, Marta Ramos & Ureña, Antonio Partal & Fernández-Aguado, Pilar Gómez, 2023. "Forecasting for regulatory credit loss derived from the COVID-19 pandemic: A machine learning approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    3. Zixue Zhao & Tianxiang Cui & Shusheng Ding & Jiawei Li & Anthony Graham Bellotti, 2024. "Resampling Techniques Study on Class Imbalance Problem in Credit Risk Prediction," Mathematics, MDPI, vol. 12(5), pages 1-27, February.
    4. Abdussalam Aljadani & Bshair Alharthi & Mohammed A. Farsi & Hossam Magdy Balaha & Mahmoud Badawy & Mostafa A. Elhosseini, 2023. "Mathematical Modeling and Analysis of Credit Scoring Using the LIME Explainer: A Comprehensive Approach," Mathematics, MDPI, vol. 11(19), pages 1-28, September.
    5. Pedro Guerra & Mauro Castelli & Nadine Côrte-Real, 2022. "Approaching European Supervisory Risk Assessment with SupTech: A Proposal of an Early Warning System," Risks, MDPI, vol. 10(4), pages 1-23, March.
    6. Andrés Alonso & José Manuel Carbó, 2021. "Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation," Working Papers 2105, Banco de España.
    7. Alonso-Robisco, Andrés & Carbó, José Manuel, 2022. "Can machine learning models save capital for banks? Evidence from a Spanish credit portfolio," International Review of Financial Analysis, Elsevier, vol. 84(C).
    8. Valter T. Yoshida Jr & Alan de Genaro & Rafael Schiozer & Toni R. E. dos Santos, 2023. "A Novel Credit Model Risk Measure: does more data lead to lower model risk in credit scoring models?," Working Papers Series 582, Central Bank of Brazil, Research Department.
    9. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
    10. Pedro Guerra & Mauro Castelli, 2021. "Machine Learning Applied to Banking Supervision a Literature Review," Risks, MDPI, vol. 9(7), pages 1-24, July.
    11. Giuseppe Cascarino & Mirko Moscatelli & Fabio Parlapiano, 2022. "Explainable Artificial Intelligence: interpreting default forecasting models based on Machine Learning," Questioni di Economia e Finanza (Occasional Papers) 674, Bank of Italy, Economic Research and International Relations Area.
    12. Ryuichiro Hashimoto & Kakeru Miura & Yasunori Yoshizaki, 2023. "Application of Machine Learning to a Credit Rating Classification Model: Techniques for Improving the Explainability of Machine Learning," Bank of Japan Working Paper Series 23-E-6, Bank of Japan.
    13. Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
    14. Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    15. Flavio Bazzana & Marco Bee & Ahmed Almustfa Hussin Adam Khatir, 2024. "Machine learning techniques for default prediction: an application to small Italian companies," Risk Management, Palgrave Macmillan, vol. 26(1), pages 1-23, February.
    16. Antonietta di Salvatore & Mirko Moscatelli, 2024. "Improving survey information on household debt using granular credit databases," Questioni di Economia e Finanza (Occasional Papers) 839, Bank of Italy, Economic Research and International Relations Area.
    17. Andrés Alonso & José Manuel Carbó, 2022. "Accuracy of explanations of machine learning models for credit decisions," Working Papers 2222, Banco de España.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfh:bbejor:v:13:y:2024:i:3:p:30-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Muhammad Irfan Chani (email available below). General contact details of provider: https://edirc.repec.org/data/rffhlpk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.