Resampling Techniques Study on Class Imbalance Problem in Credit Risk Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Andrés Alonso & José Manuel Carbó, 2020. "Machine learning in credit risk: measuring the dilemma between prediction and supervisory cost," Working Papers 2032, Banco de España.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
- Faraz Ahmed & Kehkashan Nizam & Zubair Sajid & Sunain Qamar & Ahsan, 2024. "Striking a Balance: Evaluating Credit Risk with Traditional and Machine Learning Models," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(3), pages 30-35.
- Pedro Guerra & Mauro Castelli & Nadine Côrte-Real, 2022. "Approaching European Supervisory Risk Assessment with SupTech: A Proposal of an Early Warning System," Risks, MDPI, vol. 10(4), pages 1-23, March.
- Andrés Alonso & José Manuel Carbó, 2021. "Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation," Working Papers 2105, Banco de España.
- Valter T. Yoshida Jr & Alan de Genaro & Rafael Schiozer & Toni R. E. dos Santos, 2023. "A Novel Credit Model Risk Measure: does more data lead to lower model risk in credit scoring models?," Working Papers Series 582, Central Bank of Brazil, Research Department.
- Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
- Pedro Guerra & Mauro Castelli, 2021. "Machine Learning Applied to Banking Supervision a Literature Review," Risks, MDPI, vol. 9(7), pages 1-24, July.
- Giuseppe Cascarino & Mirko Moscatelli & Fabio Parlapiano, 2022. "Explainable Artificial Intelligence: interpreting default forecasting models based on Machine Learning," Questioni di Economia e Finanza (Occasional Papers) 674, Bank of Italy, Economic Research and International Relations Area.
- Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
- Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
- Antonietta di Salvatore & Mirko Moscatelli, 2024. "Improving survey information on household debt using granular credit databases," Questioni di Economia e Finanza (Occasional Papers) 839, Bank of Italy, Economic Research and International Relations Area.
- Andrés Alonso & José Manuel Carbó, 2022. "Accuracy of explanations of machine learning models for credit decisions," Working Papers 2222, Banco de España.
More about this item
Keywords
credit risk prediction; resampling; class imbalance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:701-:d:1347551. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.