IDEAS home Printed from https://ideas.repec.org/p/bde/wpaper/2105.html
   My bibliography  Save this paper

Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation

Author

Listed:
  • Andrés Alonso

    (Banco de España)

  • José Manuel Carbó

    (Banco de España)

Abstract

In this paper we study the performance of several machine learning (ML) models for credit default prediction. We do so by using a unique and anonymized database from a major Spanish bank. We compare the statistical performance of a simple and traditionally used model like the Logistic Regression (Logit), with more advanced ones like Lasso penalized logistic regression, Classification And Regression Tree (CART), Random Forest, XGBoost and Deep Neural Networks. Following the process deployed for the supervisory validation of Internal Rating-Based (IRB) systems, we examine the benefits of using ML in terms of predictive power, both in classification and calibration. Running a simulation exercise for different sample sizes and number of features we are able to isolate the information advantage associated to the access to big amounts of data, and measure the ML model advantage. Despite the fact that ML models outperforms Logit both in classification and in calibration, more complex ML algorithms do not necessarily predict better. We then translate this statistical performance into economic impact. We do so by estimating the savings in regulatory capital when using ML models instead of a simpler model like Lasso to compute the risk-weighted assets. Our benchmark results show that implementing XGBoost could yield savings from 12.4% to 17% in terms of regulatory capital requirements under the IRB approach. This leads us to conclude that the potential benefits in economic terms for the institutions would be significant and this justify further research to better understand all the risks embedded in ML models.

Suggested Citation

  • Andrés Alonso & José Manuel Carbó, 2021. "Understanding the performance of machine learning models to predict credit default: a novel approach for supervisory evaluation," Working Papers 2105, Banco de España.
  • Handle: RePEc:bde:wpaper:2105
    as

    Download full text from publisher

    File URL: https://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/21/Files/dt2105e.pdf
    File Function: First version, January 2021
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominique Guegan & Bertrand Hassani, 2018. "Regulatory learning: How to supervise machine learning models? An application to credit scoring," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01835213, HAL.
    2. Yiping Huang & Ms. Longmei Zhang & Zhenhua Li & Han Qiu & Tao Sun & Xue Wang, 2020. "Fintech Credit Risk Assessment for SMEs: Evidence from China," IMF Working Papers 2020/193, International Monetary Fund.
    3. Edson Bastos e Santos & Neil Esho & Marc Farag & Christopher Zuin, 2020. "Variability in risk-weighted assets: what does the market think?," BIS Working Papers 844, Bank for International Settlements.
    4. Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," NBER Working Papers 26165, National Bureau of Economic Research, Inc.
    5. Dominique Guegan & Bertrand Hassani, 2018. "Regulatory learning: How to supervise machine learning models? An application to credit scoring," Post-Print halshs-01835213, HAL.
    6. Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016. "Risk and risk management in the credit card industry," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
    7. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    8. Gabriel Jiménez & Jesús Saurina, 2006. "Credit Cycles, Credit Risk, and Prudential Regulation," International Journal of Central Banking, International Journal of Central Banking, vol. 2(2), May.
    9. Mirko Moscatelli & Simone Narizzano & Fabio Parlapiano & Gianluca Viggiano, 2019. "Corporate default forecasting with machine learning," Temi di discussione (Economic working papers) 1256, Bank of Italy, Economic Research and International Relations Area.
    10. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    11. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    12. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    13. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    14. Andrés Alonso & José Manuel Carbó, 2020. "Machine learning in credit risk: measuring the dilemma between prediction and supervisory cost," Working Papers 2032, Banco de España.
    15. Jeremy D. Turiel & Tomaso Aste, 2019. "P2P Loan acceptance and default prediction with Artificial Intelligence," Papers 1907.01800, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward I. Altman & Marco Balzano & Alessandro Giannozzi & Stjepan Srhoj, 2023. "Revisiting SME default predictors: The Omega Score," Journal of Small Business Management, Taylor & Francis Journals, vol. 61(6), pages 2383-2417, November.
    2. Ryuichiro Hashimoto & Kakeru Miura & Yasunori Yoshizaki, 2023. "Application of Machine Learning to a Credit Rating Classification Model: Techniques for Improving the Explainability of Machine Learning," Bank of Japan Working Paper Series 23-E-6, Bank of Japan.
    3. Andrés Alonso & José Manuel Carbó, 2022. "Accuracy of explanations of machine learning models for credit decisions," Working Papers 2222, Banco de España.
    4. Pedro Guerra & Mauro Castelli, 2021. "Machine Learning Applied to Banking Supervision a Literature Review," Risks, MDPI, vol. 9(7), pages 1-24, July.
    5. Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso-Robisco, Andrés & Carbó, José Manuel, 2022. "Can machine learning models save capital for banks? Evidence from a Spanish credit portfolio," International Review of Financial Analysis, Elsevier, vol. 84(C).
    2. Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    3. Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
    4. García-Céspedes, Rubén & Moreno, Manuel, 2022. "The generalized Vasicek credit risk model: A Machine Learning approach," Finance Research Letters, Elsevier, vol. 47(PA).
    5. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
    6. Nicola Branzoli & Ilaria Supino, 2020. "FinTech credit: a critical review of empirical research," Questioni di Economia e Finanza (Occasional Papers) 549, Bank of Italy, Economic Research and International Relations Area.
    7. Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
    8. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    9. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    10. Cerqueti, Roy & Pampurini, Francesca & Quaranta, Anna Grazia & Storani, Saverio, 2024. "Risk transmission, systemic fragility of banks’ interacting customers and credit worthiness assessment," Finance Research Letters, Elsevier, vol. 62(PA).
    11. Paritosh Navinchandra Jha & Marco Cucculelli, 2021. "A New Model Averaging Approach in Predicting Credit Risk Default," Risks, MDPI, vol. 9(6), pages 1-15, June.
    12. Agnese Carella & Federica Ciocchetta & Valentina Michelangeli & Federico Maria Signoretti, 2020. "What can we learn about mortgage supply from online data?," Questioni di Economia e Finanza (Occasional Papers) 583, Bank of Italy, Economic Research and International Relations Area.
    13. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    14. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    15. Fraisse, Henri & Laporte, Matthias, 2022. "Return on investment on artificial intelligence: The case of bank capital requirement," Journal of Banking & Finance, Elsevier, vol. 138(C).
    16. Jagjit S. Chadha & Richard Barwell, 2019. "Renewing our Monetary Vows: Open Letters to the Governor of the Bank of England," National Institute of Economic and Social Research (NIESR) Occasional Papers 58, National Institute of Economic and Social Research.
    17. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    18. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    19. Nakagawa, Kei & Sakemoto, Ryuta, 2022. "Cryptocurrency network factors and gold," Finance Research Letters, Elsevier, vol. 46(PB).
    20. Haskamp, Ulrich, 2017. "Improving the forecasts of European regional banks' profitability with machine learning algorithms," Ruhr Economic Papers 705, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    More about this item

    Keywords

    machine learning; credit risk; prediction; probability of default; IRB system;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bde:wpaper:2105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ángel Rodríguez. Electronic Dissemination of Information Unit. Research Department. Banco de España (email available below). General contact details of provider: https://edirc.repec.org/data/bdegves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.