Mathematical Modeling and Analysis of Credit Scoring Using the LIME Explainer: A Comprehensive Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ahmed Almustfa Hussin Adam Khatir & Marco Bee, 2022. "Machine Learning Models and Data-Balancing Techniques for Credit Scoring: What Is the Best Combination?," Risks, MDPI, vol. 10(9), pages 1-22, August.
- repec:eme:mfppss:eb013696 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Faraz Ahmed & Kehkashan Nizam & Zubair Sajid & Sunain Qamar & Ahsan, 2024. "Striking a Balance: Evaluating Credit Risk with Traditional and Machine Learning Models," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(3), pages 30-35.
- Flavio Bazzana & Marco Bee & Ahmed Almustfa Hussin Adam Khatir, 2024. "Machine learning techniques for default prediction: an application to small Italian companies," Risk Management, Palgrave Macmillan, vol. 26(1), pages 1-23, February.
- Luis J. Mena & Vicente García & Vanessa G. Félix & Rodolfo Ostos & Rafael Martínez-Peláez & Alberto Ochoa-Brust & Pablo Velarde-Alvarado, 2024. "Enhancing financial risk prediction with symbolic classifiers: addressing class imbalance and the accuracy–interpretability trade–off," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
More about this item
Keywords
credit scoring; empirical analysis; feature selection; LIME explainer; machine learning (ML); particle swarm optimization (PSO);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4055-:d:1246852. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.