IDEAS home Printed from https://ideas.repec.org/a/rfh/bbejor/v13y2024i2p563-572.html
   My bibliography  Save this article

Pakistan Energy Outlook for Next 25 Years

Author

Listed:
  • Jaweriya Naz

    (Lecturer, Dept. of Economics & Management Sciences, NED University of Engineering & Technology, Karachi, Pakistan)

  • Dr. Mirza Faizan Ahmed

    (Assistant Professor, Dept. of Economics & Management Sciences, NED University of Engineering & Technology, Karachi, Pakistan)

  • Prof. Dr. Raza Ali Khan

    (Retired Chairman, Dept. of Economics & Management Sciences, NED University of Engineering & Technology, Karachi, Pakistan)

Abstract

This research aims to estimate the sectoral demand and supply of energy in Pakistan. It incorporates macro and microeconomic data to make reliable forecasting for each sector and sources of energy that is aligned with demographic, economic and industrial development of Pakistan. Box Jenkins methodology in which the ARMAX model is applied to use historical data for forecasting. This research used the time series data from 1990 to 2021. From the analysis, it has been found that estimated energy indicates that energy demand and supply will be continuously increasing, and the demand and supply gap will be minimized in the next 25 years. The overall estimates of the energy supply mix indicate that over-dependence on oil for energy production will be reduced from 23.3% in 2021 to 15.2% in 2046. Similarly, demand for oil will decline from 21.2% in 2021 to 10.7% in 2046. However, supply mix reflects an inclination towards the usage of coal and renewable energy sources for the production of energy. In addition, renewable energy sources demand increases from 1.0% in 2021 to 7.3% in 2046. The core finding of the research suggests that energy deficit will decline with the effective implement a government energy supply plan that result in the elimination of energy deficit in next seven years. There is a supply and demand gap even though both energy demand and supply will increase. Higher dependence on imported energy import bills is on continuous rise which burdened the economy with higher debt. However, by shifting it to renewable energy sources, this can be minimized and made the energy affordable and accessible. The energy estimates for the supply suggest that dependence on oil will decline due to higher environmental concerns. However, there will be more inclination toward sustainable sources of energy production.

Suggested Citation

  • Jaweriya Naz & Dr. Mirza Faizan Ahmed & Prof. Dr. Raza Ali Khan, 2024. "Pakistan Energy Outlook for Next 25 Years," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 13(2), pages 563-572.
  • Handle: RePEc:rfh:bbejor:v:13:y:2024:i:2:p:563-572
    DOI: https://doi.org/10.61506/01.00364
    as

    Download full text from publisher

    File URL: https://bbejournal.com/BBE/article/view/827/889
    Download Restriction: no

    File URL: https://bbejournal.com/BBE/article/view/827
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.61506/01.00364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jobling, Andrew & Jamasb, Tooraj, 2017. "Price volatility and demand for oil: A comparative analysis of developed and developing countries," Economic Analysis and Policy, Elsevier, vol. 53(C), pages 96-113.
    2. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    3. Azlina Abd. Aziz & Nik Hashim Nik Mustapha & Roslina Ismail, 2013. "Factors Affecting Energy Demand in Developing Countries: A Dynamic Panel Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 1-6.
    4. Tao Hong & Pierre Pinson & Yi Wang & Rafal Weron & Dazhi Yang & Hamidreza Zareipour, 2020. "Energy forecasting: A review and outlook," WORking papers in Management Science (WORMS) WORMS/20/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    5. Malik, Sadia & Qasim, Maha & Saeed, Hasan & Chang, Youngho & Taghizadeh-Hesary, Farhad, 2020. "Energy security in Pakistan: Perspectives and policy implications from a quantitative analysis," Energy Policy, Elsevier, vol. 144(C).
    6. Jones, Glenn A. & Warner, Kevin J., 2016. "The 21st century population-energy-climate nexus," Energy Policy, Elsevier, vol. 93(C), pages 206-212.
    7. Shoaib Ahmed Khatri & Nayyar Hussain Mirjat & Khanji Harijan & Mohammad Aslam Uqaili & Syed Feroz Shah & Pervez Hameed Shaikh & Laveet Kumar, 2022. "An Overview of the Current Energy Situation of Pakistan and the Way Forward towards Green Energy Implementation," Energies, MDPI, vol. 16(1), pages 1-27, December.
    8. Nadimi, Reza & Tokimatsu, Koji, 2018. "Energy use analysis in the presence of quality of life, poverty, health, and carbon dioxide emissions," Energy, Elsevier, vol. 153(C), pages 671-684.
    9. Chris Trimble & Nobuo Yoshida & Mohammad Saqib, 2011. "Rethinking Electricity Tariffs and Subsidies in Pakistan," World Bank Publications - Reports 19456, The World Bank Group.
    10. Abbasi, Kashif Raza & Abbas, Jaffar & Tufail, Muhammad, 2021. "Revisiting electricity consumption, price, and real GDP: A modified sectoral level analysis from Pakistan," Energy Policy, Elsevier, vol. 149(C).
    11. Reitler, W. & Rudolph, M. & Schaefer, H., 1987. "Analysis of the factors influencing energy consumption in industry : A revised method," Energy Economics, Elsevier, vol. 9(3), pages 145-148, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan, Muhammad Zain & Ullah, Kafait & Abbas, Faisal & Khalid, Hassan Abdullah & Bajwa, Tariq M., 2023. "Barriers to the adoption of social welfare measures in the electricity tariff structure of developing countries: A case of Pakistan," Energy Policy, Elsevier, vol. 179(C).
    2. Nametala, Ciniro Aparecido Leite & Faria, Wandry Rodrigues & Lage, Guilherme Guimarães & Pereira, Benvindo Rodrigues, 2023. "Analysis of hourly price granularity implementation in the Brazilian deregulated electricity contracting environment," Utilities Policy, Elsevier, vol. 81(C).
    3. Praene, Jean Philippe & Rasamoelina, Rindrasoa Miangaly & Ayagapin, Leslie, 2021. "Past and prospective electricity scenarios in Madagascar: The role of government energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Pinzón, Kathia, 2018. "Dynamics between energy consumption and economic growth in Ecuador: A granger causality analysis," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 88-101.
    5. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    6. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    7. Larissa M. Batrancea & Horia Tulai, 2022. "Thriving or Surviving in the Energy Industry: Lessons on Energy Production from the European Economies," Energies, MDPI, vol. 15(22), pages 1-16, November.
    8. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    9. Qiu, Lei & Wang, Xiaoyang & Wei, Jia, 2023. "Energy security and energy management: The role of extreme natural events," Innovation and Green Development, Elsevier, vol. 2(2).
    10. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    11. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    12. Qiyao Liu & Xiaodong Zhu, 2024. "Incentive strategies for retired power battery closed-loop supply chain considering corporate social responsibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 19013-19050, July.
    13. Abbas, Khizar & Li, Shixiang & Xu, Deyi & Baz, Khan & Rakhmetova, Aigerim, 2020. "Do socioeconomic factors determine household multidimensional energy poverty? Empirical evidence from South Asia," Energy Policy, Elsevier, vol. 146(C).
    14. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    15. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    16. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    17. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    18. Shujaat Abbas & Hazrat Yousaf & Shabeer Khan & Mohd Ziaur Rehman & Dmitri Blueschke, 2023. "Analysis and Projection of Transport Sector Demand for Energy and Carbon Emission: An Application of the Grey Model in Pakistan," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    19. Shadi Tehrani & Jesús Juan & Eduardo Caro, 2022. "Electricity Spot Price Modeling and Forecasting in European Markets," Energies, MDPI, vol. 15(16), pages 1-23, August.
    20. Sallahuddin Hassan, 2018. "Long Run Energy Demand and Its Determinants: A Panel Cointegration Analysis of the Association of Southeast Asian Nations-5," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 270-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfh:bbejor:v:13:y:2024:i:2:p:563-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Muhammad Irfan Chani (email available below). General contact details of provider: https://edirc.repec.org/data/rffhlpk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.