IDEAS home Printed from https://ideas.repec.org/a/qui/ecosoc/y2016i34p106-118.html
   My bibliography  Save this article

Assessment of Price Risk on Agricultural Inventory Credit under Sparse Data Conditions

Author

Listed:
  • David Magaña Lemus

    (FIRA)

Abstract

El crédito prendario es ampliamente utilizado como un instrumento para satisfacer las necesidades de capital de trabajo. Existen metodologías para evaluar el riesgo de precio para estos esquemas crediticios, tales como modificaciones de valor en riesgo (VaR ) . La mayoría de estos métodos se basan en supuestos de distribución. Sin embargo, cuando el número de observaciones es bajo es difícil refugiarse en el teorema del límite central. La contribución de este trabajo es proponer una metodología para estimar el riesgo de precios a la baja, incluso en presencia de datos escasos. El uso de la metodología se ilustra con el análisis de precios para un producto en particular. El propósito de este modelo de simulación es proporcionar información de apoyo para la toma de decisiones en los procesos de concesión de crédito.

Suggested Citation

  • David Magaña Lemus, 2016. "Assessment of Price Risk on Agricultural Inventory Credit under Sparse Data Conditions," Economia y Sociedad., Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Economia, issue 34, pages 106-118, Enero-Jun.
  • Handle: RePEc:qui:ecosoc:y:2016:i:34:p:106-118
    as

    Download full text from publisher

    File URL: http://economiaysociedad.umich.mx/ojs_ecosoc/index.php/ecosoc/article/download/160/154
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horowitz, Joel L., 1993. "Semiparametric estimation of a work-trip mode choice model," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 49-70, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    2. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    3. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    4. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    5. Bellemare, C. & Melenberg, B. & van Soest, A.H.O., 2002. "Semi-parametric Models for Satisfaction with Income," Discussion Paper 2002-87, Tilburg University, Center for Economic Research.
    6. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    7. Dustmann C. & Van Soest A., 2004. "An Analysis of Speaking Fluency of Immigrants Using Ordered Response Models With Classification Errors," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 312-321, July.
    8. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    9. Danilo Coelho & Helena Veiga & R?rt Veszteg, 2005. "Parametric and semiparametric estimation of sample selection models: an empirical application to the female labour force in Portugal," UFAE and IAE Working Papers 636.05, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    10. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    11. Fosgerau, Mogens, 2007. "Using nonparametrics to specify a model to measure the value of travel time," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 842-856, November.
    12. Pedro Gozalo & Oliver Linton, 1994. "Local Nonlinear Least Squares Estimation: Using Parametric Information Nonparametrically," Cowles Foundation Discussion Papers 1075, Cowles Foundation for Research in Economics, Yale University.
    13. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    14. Roberto Rigobon, 2002. "Contagion: How to Measure It?," NBER Chapters, in: Preventing Currency Crises in Emerging Markets, pages 269-334, National Bureau of Economic Research, Inc.
    15. Ginker, Tim & Lieberman, Offer, 2017. "Robustness of binary choice models to conditional heteroscedasticity," Economics Letters, Elsevier, vol. 150(C), pages 130-134.
    16. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    17. Florios, Kostas, 2018. "A hyperplanes intersection simulated annealing algorithm for maximum score estimation," Econometrics and Statistics, Elsevier, vol. 8(C), pages 37-55.
    18. Ker, Alan P. & Ergun, A. Tolga, 2003. "On The Revelation Of Asymmetric Information Of The Private Insurance Companies In The Us Crop Insurance Program," 2003 Annual meeting, July 27-30, Montreal, Canada 21898, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Donato Romano & Riccardo Scarpa & Fiorenza Spalatro & Laura Viganò, 2000. "Modelling Determinants of Participation, Number of Trips and Site Choice for Outdoor Recreation in Protected Areas," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(2), pages 224-238, May.
    20. Mark J. Garmaise & Tobias J. Moskowitz, 2002. "Informal Financial Networks: Theory and Evidence," NBER Working Papers 8874, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    crédito prendario; evaluación de riesgo precio; métodos no paramétricos; simulación;
    All these keywords.

    JEL classification:

    • B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qui:ecosoc:y:2016:i:34:p:106-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Faculty of Economics, Deparment of Informatics Services (DSI-FEVaQ) (email available below). General contact details of provider: https://edirc.repec.org/data/femicmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.