IDEAS home Printed from https://ideas.repec.org/a/cpn/umkdem/v9y2009p128-138.html
   My bibliography  Save this article

Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification

Author

Listed:
  • Roman Huptas

    (Cracow University of Economics)

Abstract

The aim of this paper is to outline the typical characteristics of the ultra-high-frequency financial data and to present estimation methods of intraday seasonality of trading activity. Ultra-high-frequency financial data (transactions data or tick-by-tick data) is defined to be a full record of transactions and their associated characteristics. We consider two nonparametric estimation methods: cubic splines and a Nadaraya-Watson kernel estimator of regression. Both approaches are compared empirically and applied to financial data of stocks traded at the Warsaw Stock Exchange.

Suggested Citation

  • Roman Huptas, 2009. "Intraday Seasonality in Analysis of UHF Financial Data: Models and Their Empirical Verification," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 9, pages 128-138.
  • Handle: RePEc:cpn:umkdem:v:9:y:2009:p:128-138
    as

    Download full text from publisher

    File URL: http://www.dem.umk.pl/dem/archiwa/v9/15_RHuptas_UE_Kr.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    2. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    3. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    4. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    2. Hugh Christensen & Simon Godsill & Richard E Turner, 2020. "Hidden Markov Models Applied To Intraday Momentum Trading With Side Information," Papers 2006.08307, arXiv.org.
    3. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    4. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    2. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    3. Allen, David & Ng, K.H. & Peiris, Shelton, 2013. "The efficient modelling of high frequency transaction data: A new application of estimating functions in financial economics," Economics Letters, Elsevier, vol. 120(1), pages 117-122.
    4. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    6. Tony S. Wirjanto & Adam W. Kolkiewicz & Zhongxian Men, 2013. "Stochastic Conditional Duration Models with Mixture Processes," Working Paper series 29_13, Rimini Centre for Economic Analysis.
    7. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    8. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    9. Aerambamoorthy Thavaneswaran & Nalini Ravishanker & You Liang, 2015. "Generalized duration models and optimal estimation using estimating functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 129-156, February.
    10. Lee, Sangyeol & Oh, Haejune, 2015. "Entropy test and residual empirical process for autoregressive conditional duration models," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 1-12.
    11. Katarzyna Bien-Barkowska, 2011. "Distribution Choice for the Asymmetric ACD Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 55-72.
    12. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    13. Andres, P. & Harvey, A., 2012. "The Dyanamic Location/Scale Model: with applications to intra-day financial data," Cambridge Working Papers in Economics 1240, Faculty of Economics, University of Cambridge.
    14. Gómez-Déniz, E. & Pérez-Rodríguez, J.V., 2019. "Modelling bimodality of length of tourist stay," Annals of Tourism Research, Elsevier, vol. 75(C), pages 131-151.
    15. COSMA, Antonio & GALLI, Fausto, 2006. "A nonparametric ACD model," LIDAM Discussion Papers CORE 2006067, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Samuel Gingras & William J. McCausland, 2020. "A Flexible Stochastic Conditional Duration Model," Papers 2005.09166, arXiv.org.
    17. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    18. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    19. Bhatti, Chad R., 2009. "Intraday trade and quote dynamics: A Cox regression analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2240-2249.
    20. Pooi AH-HIN & Ng KOK-HAUR & Soo HUEI-CHING, 2016. "Modelling and Forecasting with Financial Duration Data Using Non-linear Model," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(2), pages 79-92.
    21. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    22. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpn:umkdem:v:9:y:2009:p:128-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Miroslawa Buczynska (email available below). General contact details of provider: http://www.wydawnictwoumk.pl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.