IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v1y2009i1p71-81.html
   My bibliography  Save this article

A Note on Option Pricing with the Use of Discrete-Time Stochastic Volatility Processes

Author

Listed:
  • Anna Pajor

    (Cracow University of Economics)

Abstract

In this paper we show that in the lognormal discrete-time stochastic volatility model with predictable conditional expected returns, the conditional expected value of the discounted payoff of a European call option is infinite. Our empirical illustration shows that the characteristics of the predictive distributions of the discounted payoffs, obtained using Monte Carlo methods, do not indicate directly that the expected discounted payoffs are infinite.

Suggested Citation

  • Anna Pajor, 2009. "A Note on Option Pricing with the Use of Discrete-Time Stochastic Volatility Processes," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 1(1), pages 71-81, March.
  • Handle: RePEc:psc:journl:v:1:y:2009:i:1:p:71-81
    as

    Download full text from publisher

    File URL: http://cejeme.org/publishedarticles/2009-41-31-633740820660689040-8334.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. George J. Jiang & Pieter J. van der Sluis, 1999. "Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates," Review of Finance, European Finance Association, vol. 3(3), pages 273-310.
    2. Amin, Kaushik I & Ng, Victor K, 1993. "Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
    3. Ronald J. Mahieu & Peter C. Schotman, 1998. "An empirical application of stochastic volatility models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 333-360.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    6. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    7. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Pajor, 2008. "Bayesian Forecasting of the Discounted Payoff of Options on WIG20 Index under Stochastic Volatility and Stochastic Interest Rates," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 8, pages 147-154.
    2. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    3. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    4. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    5. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    6. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. Rachid Belhachemi, 2024. "Option Valuation with Conditional Heteroskedastic Hidden Truncation Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2585-2601, June.
    8. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    9. GARCIA, René & RENAULT, Éric, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Universite de Montreal, Departement de sciences economiques.
    10. René Garcia & Richard Luger & Éric Renault, 2005. "Viewpoint: Option prices, preferences, and state variables," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(1), pages 1-27, February.
    11. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    12. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    13. Aase, Knut K., 2000. "An equilibrium asset pricing model based on Lévy processes: relations to stochastic volatility, and the survival hypothesis," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 345-363, December.
    14. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    15. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    16. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    17. Robert F. Engle & Joshua Rosenberg, 1966. "Testing the Volatility Term Structure Using Option Hedging Criteria," New York University, Leonard N. Stern School Finance Department Working Paper Seires 96-24, New York University, Leonard N. Stern School of Business-.
    18. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    19. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    20. René Garcia & Richard Luger & Eric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)," CIRANO Working Papers 2001s-02, CIRANO.

    More about this item

    Keywords

    option pricing; SV model; Bayesian forecasting;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:1:y:2009:i:1:p:71-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.