IDEAS home Printed from https://ideas.repec.org/a/prs/ecstat/estat_0336-1454_1997_num_307_1_2584.html
   My bibliography  Save this article

Mieux prévoir les variations de stocks avec les enquêtes de conjoncture

Author

Listed:
  • Hélène Eyssartier
  • Claire Waysand

Abstract

[fre] Mieux prévoir les variations de stocks avec les enquêtes de conjoncture Les variations de stocks de produits manufacturés ont eu ces dernières années un impact important sur la production industrielle, et donc sur la croissance économique. Il est donc utile d'améliorer leur prévision à court terme. Pour ce faire, on cherche ici à mieux cerner les déterminants microéconomiques de ces variations en utilisant les enquêtes de conjoncture de l'Insee : celles-ci décrivent notamment les anticipations et les jugements des chefs d'entreprise sur leur environnement économique. Au niveau individuel, les facteurs qui conduisent une entreprise à déclarer ses stocks « supérieurs à la normale » sont : une demande déprimée, des délais de livraison qui ont tendance à se raccourcir - témoins d'un changement de l'équilibre entre l'offre et la demande - et des prix prévus en baisse. Au niveau agrégé, les stocks sont jugés plus lourds lorsqu'augmente le pourcentage d'entreprises qui éprouvent des difficultés de trésorerie et que diminuent les délais de livraison. Mieux comprendre comment se forme l'opinion individuelle sur les stocks permet d'améliorer leur prévision au niveau macroéconomique. Le modèle couramment retenu, dit « accélérateur », qui lie les variations de stocks aux variations passées de la demande, explique en effet assez mal les évolutions récentes des stocks. Le modèle proposé, qui prend en compte des variables d'opinion et d'anticipation de demande et de prix, retrace mieux les variations de stocks des dernières années. [eng] Using Business Surveys for Better Forecasts of Changes in Stocks . Changes in stocks of manufactured goods have had a great effect on industrial production and hence economic growth in recent years. It is therefore useful to improve their short-term forecasting. To do this, INSEE business surveys are used in an endeavour to more accurately define the microeconomic determinants of these changes. These surveys identify in particular company heads' expectations and levels of confidence regarding their business environment. At individual level, the factors that make a firm declare its stocks "above normal" are: depressed demand, shortening delivery times reflecting a change in the balance between supply and demand, and expected price cuts. At aggregate level, stocks are deemed higher when the percentage of firms with cash flow problems increases and delivery times shorten. A better understanding of how individual opinions are formed regarding stocks improves stock forecasting at macroeconomic level. The "accelerator" model typically used, which compares changes in stocks with past changes in demand, does not provide a very good explanation of recent changes in stocks. The model put forward here takes into account demand and price expectation and opinion variables. This model provides a better account of changes in stocks in recent years. [ger] Bessere Vorhersage der Schwankungen der Lagerbestande mit Hilfe der Konjunkturerhebungen Die Schwankungen der- Lagerbestande von Industriegûtern hatten in den letzten Jahren eine erhebliche Auswirkung auf die Industrieproduktion und somit auf das Wirtschaftswachstum. Nutzlich ist deshalb eine Verbesserung ihrer kurzfristigen Vorhersage. Zu diesem Zweck sollen in diesem Artikel die mikroôkonomischen Determinanten dieser Schwankungen anhand der INSEE- Konjunkturerhebungen besser abgegrenzt werden; diese beschreiben insbesondere die Erwartungen und die Bewertungen der Unternehmer hinsichtlich ihres wirtschaftlichen Umfeldes. Die individuellen Faktoren, die ein Unternehmen veranlassen, seine Lagerbestande als "grôGerals normal" anzugeben, sind: eine rùcklàufige Nachfrage, kûrzer werdende Lieferfristen, die eine Ânderung des Gleichgewichtes zwischen Angebot und Nachfrage widerspiegeln, sowie erwartete Preisrûckgânge. Auf aggregierter Ebene werden die Lagerbestande als eine grôBere Belastung betrachtet, wenn der Prozentsatz der Unternehmen, die sich in finanziellen Schwierigkeiten befinden, zunimmt und wenn die Lieferfristen kiirzer werden. Ein besseres Verstândnis, wie es zur individuellen Bewertung der Lagerbestande kommt, ermoglicht eine bessere Prognose auf makroôkonomischer Ebene. Das gàngige Modell mit der Bezeichnung "Beschleuniger", das die Schwankungen der Lagerbestande zu den zuruckliegenden Nachfrageschwankungen in Bezug setzt, gibt in der Tat eine recht schlechte Erklàrung fur die jùngsten Entwicklungen der Lagerbestande ab. Das vorgeschlagene Modell, bei dem Variablen der Bewertung sowie der Nachfrage- und Preiserwartung berûcksichtigt werden, gibt einen besseren AufschluB iiber die Schwankungen der Lagerbestande in den letzten Jahren. [spa] Prever mejor las variaciones de las existencias gracias a las encuestas de coyuntura Las variaciones de las existencias de productos manufacturados tuvieron en los ûltimos anos un impacto importante en la producciôn industrial, y por tanto en el crecimiento econômico. Es util, pues, mejorar su prevision a corto plazo. Para eso, intentamos aqui définir los déterminantes microeconómicos de aquellas variaciones valiéndonos de las encuestas de coyuntura del Insee : estas describen entre otras cosas las anticipaciones y las opiniones de los empresarios acerca de su entorno económico. A nivel individual, los factores que hacen que una empresa declare existencias "superiores a la normalidad" son los siguientes : una demanda deprimida, plazos de entrega que tienden a disminuir - testigos de un cambio en el equilibrio entre la oferta y la demanda - y unos precios previstos a la baja. A nivel agregado, las existencias estân consideradas como mâs pesadas cuando aumenta el porcentaje de aquellas empresas que tienen dificultades de tesoreria y disminuyen los plazos de entrega. Comprender mejor cómo se forma la opinion individual acerca de las existencias permite mejorar su prevision a nivel macroeconómico. El modelo comunmente adoptado, llamado "acelerador", el cual relaciona las variaciones de las existencias con las variaciones pasadas de la demanda, explica en efecto bastante mal las evoluciones recientes de las existencias. El modelo propuesto, que toma en cuenta unas variables de opinion y de anticipación de demanda y de precios, describe mejor las variaciones de las existencias en los ûltimos anos.

Suggested Citation

  • Hélène Eyssartier & Claire Waysand, 1997. "Mieux prévoir les variations de stocks avec les enquêtes de conjoncture," Économie et Statistique, Programme National Persée, vol. 307(1), pages 77-91.
  • Handle: RePEc:prs:ecstat:estat_0336-1454_1997_num_307_1_2584
    DOI: 10.3406/estat.1997.2584
    Note: DOI:10.3406/estat.1997.2584
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/estat.1997.2584
    Download Restriction: no

    File URL: https://www.persee.fr/doc/estat_0336-1454_1997_num_307_1_2584
    Download Restriction: no

    File URL: https://libkey.io/10.3406/estat.1997.2584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. West, Kenneth D, 1986. "A Variance Bounds Test of the Linear Quadratic Inventory Model," Journal of Political Economy, University of Chicago Press, vol. 94(2), pages 374-401, April.
    2. Eric Dubois, 1991. "Le modèle de lissage de la production par les stocks est-il valide en France ?," Économie et Prévision, Programme National Persée, vol. 99(3), pages 95-111.
    3. José A. Scheinkman & Jack Schechtman, 1983. "A Simple Competitive Model with Production and Storage," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(3), pages 427-441.
    4. Eichenbaum, Martin, 1989. "Some Empirical Evidence on the Production Level and Production Cost Smoothing Models of Inventory Investment," American Economic Review, American Economic Association, vol. 79(4), pages 853-864, September.
    5. Alan S. Blinder, 1986. "Can the Production Smoothing Model of Inventory Behavior be Saved?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(3), pages 431-453.
    6. Laroque, Guy, 1989. "On the Inventory Cycle and the Instability of the Competitive Mechanism," Econometrica, Econometric Society, vol. 57(4), pages 911-935, July.
    7. Kenneth D. West, 1987. "Order Backlogs and Production Smoothing," NBER Working Papers 2385, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carine Bouthevillain & Didier Eyssartier, 1997. "Le rôle des variations de stocks dans les cycles d'activité des principaux pays industrialisés," Revue de l'OFCE, Programme National Persée, vol. 62(1), pages 151-202.
    2. Humphreys, Brad R. & Maccini, Louis J. & Schuh, Scott, 2001. "Input and output inventories," Journal of Monetary Economics, Elsevier, vol. 47(2), pages 347-375, April.
    3. Yi Wen, 2005. "The multiplier: a general equilibrium analysis of multi-stage-fabrication economy with inventories," Working Papers 2005-046, Federal Reserve Bank of St. Louis.
    4. Maccini, Louis J. & Moore, Bartholomew & Schaller, Huntley, 2015. "Inventory behavior with permanent sales shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 290-313.
    5. West, Kenneth D., 1990. "Evidence from seven countries on whether inventories smooth aggregate output," Engineering Costs and Production Economics, Elsevier, vol. 19(1-3), pages 85-90, May.
    6. Yi Wen, 2007. "Production and Inventory Behavior of Capital," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 95-112, May.
    7. Blinder, Alan S & Maccini, Louis J, 1991. "The Resurgence of Inventory Research: What Have We Learned?," Journal of Economic Surveys, Wiley Blackwell, vol. 5(4), pages 291-328.
    8. Hall, George & Rust, John, 2000. "An empirical model of inventory investment by durable commodity intermediaries," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 52(1), pages 171-214, June.
    9. James A. Kahn & Mark Bils, 2000. "What Inventory Behavior Tells Us about Business Cycles," American Economic Review, American Economic Association, vol. 90(3), pages 458-481, June.
    10. Durlauf, Steven N. & Maccini, Louis J., 1995. "Measuring noise in inventory models," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 65-89, August.
    11. Wen, Yi, 2003. "The Power of Demand: A General Equilibrium Analysis of Multi-Stage-Fabrication Economy with Inventories," Working Papers 03-13r, Cornell University, Center for Analytic Economics.
    12. Louis Maccini, 2013. "Inventory Behavior with Permanent Sales Shocks," Economics Working Paper Archive 608, The Johns Hopkins University,Department of Economics.
    13. Scott Schuh, "undated". "Evidence on the Link between Firm-Level and Aggregate Inventory Behavior," Finance and Economics Discussion Series 1996-46, Board of Governors of the Federal Reserve System (U.S.), revised 10 Dec 2019.
    14. Wen, Yi, 2005. "Understanding the inventory cycle," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1533-1555, November.
    15. Alan S. Blinder & Louis J. Maccini, 1991. "Taking Stock: A Critical Assessment of Recent Research on Inventories," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 73-96, Winter.
    16. Louis J. Maccini & Bartholomew J. Moore & Huntley Schaller, 2004. "The Interest Rate, Learning, and Inventory Investment," American Economic Review, American Economic Association, vol. 94(5), pages 1303-1327, December.
    17. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
    18. Kollintzas, Tryphon, 1995. "A generalized variance bounds test with an application to the Holt et al. inventory model," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 59-89.
    19. Yi Wen, 2008. "Inventories, liquidity, and the macroeconomy," Working Papers 2008-045, Federal Reserve Bank of St. Louis.
    20. Yi Wen, 2011. "Input and Output Inventory Dynamics," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(4), pages 181-212, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecstat:estat_0336-1454_1997_num_307_1_2584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/estat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.