Posouzení modelů odhadu tržního rizika s využitím DEA přístupu
[Examination of Market Risk Estimation Models via DEA Approach Modelling]
Author
Abstract
Suggested Citation
DOI: 10.18267/j.polek.1134
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
- Fontanari, Andrea & Cirillo, Pasquale & Oosterlee, Cornelis W., 2018. "From Concentration Profiles to Concentration Maps. New tools for the study of loss distributions," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 13-29.
- Gordy, Michael B. & McNeil, Alexander J., 2020.
"Spectral backtests of forecast distributions with application to risk management,"
Journal of Banking & Finance, Elsevier, vol. 116(C).
- Michael B. Gordy & Alexander J. McNeil, 2017. "Spectral backtests of forecast distributions with application to risk management," Papers 1708.01489, arXiv.org, revised Jul 2019.
- Michael B. Gordy & Alexander J. McNeil, 2018. "Spectral Backtests of Forecast Distributions with Application to Risk Management," Finance and Economics Discussion Series 2018-021, Board of Governors of the Federal Reserve System (U.S.).
- Fortin, Alain-Philippe & Simonato, Jean-Guy & Dionne, Georges, 2023.
"Forecasting expected shortfall: Should we use a multivariate model for stock market factors?,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 314-331.
- Fortin, Alain-Philippe & Simonato, Jean-Guy & Dionne, Georges, 2018. "Forecasting Expected Shortfall: Should we use a Multivariate Model for Stock Market Factors?," Working Papers 18-4, HEC Montreal, Canada Research Chair in Risk Management, revised 25 Jun 2021.
- Till Barz & Andreas Nastansky, 2024. "Herausforderungen des finanziellen Risikomanagements: Eine empirische Untersuchung des Value at Risk-Ansatzes in Stresssituationen," Statistische Diskussionsbeiträge 57, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
- Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019.
"Dynamic semiparametric models for expected shortfall (and Value-at-Risk),"
Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
- Andrew J. Patton & Johanna F. Ziegel & Rui Chen, 2017. "Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)," Papers 1707.05108, arXiv.org.
- Nick Costanzino & Michael Curran, 2018. "A Simple Traffic Light Approach to Backtesting Expected Shortfall," Risks, MDPI, vol. 6(1), pages 1-7, January.
- Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018.
"Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
- Marie Kratz & Yen H. Lok & Alexander J McNeil, 2016. "Multinomial VaR Backtests: A simple implicit approach to backtesting expected shortfall," Papers 1611.04851, arXiv.org.
- Hamed Tabasi & Vahidreza Yousefi & Jolanta Tamošaitienė & Foroogh Ghasemi, 2019. "Estimating Conditional Value at Risk in the Tehran Stock Exchange Based on the Extreme Value Theory Using GARCH Models," Administrative Sciences, MDPI, vol. 9(2), pages 1-17, May.
- James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
- Ophélie Couperier & Jérémy Leymarie, 2020. "Backtesting Expected Shortfall via Multi-Quantile Regression," Working Papers halshs-01909375, HAL.
- An Chen & Mitja Stadje & Fangyuan Zhang, 2020. "On the equivalence between Value-at-Risk- and Expected Shortfall-based risk measures in non-concave optimization," Papers 2002.02229, arXiv.org, revised Jun 2022.
More about this item
Keywords
model quality; data envelopment analysis; market risk; Value at Risk; historical simu-lation; NIG;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlpol:v:2017:y:2017:i:2:id:1134:p:161-178. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.