IDEAS home Printed from https://ideas.repec.org/a/prg/jnlpep/v2003y2003i1id207.html
   My bibliography  Save this article

Forecasting with leading economic indicators - a non-linear approach

Author

Listed:
  • Timotej Jagric

Abstract

Leading economic indicators have a long tradition in forecasting future economic activity. Recent developments, however, suggest that there is scope for adding extensions to the methodology of forecasting major economic fluctuations. In this paper, the author tries to develop a new model, which would outperform the forecast accuracy of classical leading indicators model. The use of artificial neural networks is proposed here. For demonstration a case study for Slovene economy is included. The main finding is that, at the twelve months forecasting horizon, a stable and improved forecast accuracy could be achieved for in- and out-of-sample data.

Suggested Citation

  • Timotej Jagric, 2003. "Forecasting with leading economic indicators - a non-linear approach," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(1), pages 68-83.
  • Handle: RePEc:prg:jnlpep:v:2003:y:2003:i:1:id:207
    DOI: 10.18267/j.pep.207
    as

    Download full text from publisher

    File URL: http://pep.vse.cz/doi/10.18267/j.pep.207.html
    Download Restriction: free of charge

    File URL: http://pep.vse.cz/doi/10.18267/j.pep.207.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.pep.207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulrich Fritsche & Sabine Stephan, 2000. "Leading Indicators of German Business Cycles: An Assessment of Properties," Macroeconomics 0004005, University Library of Munich, Germany.
    2. Timotej Jagri, 2002. "Measuring Business Cycles: The Case of Slovenia," Eastern European Economics, Taylor & Francis Journals, vol. 40(1), pages 63-87, January.
    3. Tkacz, Greg, 2001. "Neural network forecasting of Canadian GDP growth," International Journal of Forecasting, Elsevier, vol. 17(1), pages 57-69.
    4. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    5. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    6. Stekler, H. O., 1991. "Macroeconomic forecast evaluation techniques," International Journal of Forecasting, Elsevier, vol. 7(3), pages 375-384, November.
    7. Steven Gonzalez, "undated". "Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models," Working Papers-Department of Finance Canada 2000-07, Department of Finance Canada.
    8. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    9. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    10. Jaditz, Ted & Riddick, Leigh A. & Sayers, Chera L., 1998. "MULTIVARIATE NONLINEAR FORECASTING Using Financial Information to Forecast the Real Sector," Macroeconomic Dynamics, Cambridge University Press, vol. 2(3), pages 369-382, September.
    11. Wojciech W. Charemza & Derek F. Deadman, 1992. "New Directions In Econometric Practice," Books, Edward Elgar Publishing, number 84.
    12. Saul H. Hymans, 1973. "On the Use of Leading Indicators to Predict Cyclical Turning Points," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 4(2), pages 339-384.
    13. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chian, Abraham C.-L. & Rempel, Erico L. & Rogers, Colin, 2006. "Complex economic dynamics: Chaotic saddle, crisis and intermittency," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1194-1218.
    2. Farzan Aminian & E. Suarez & Mehran Aminian & Daniel Walz, 2006. "Forecasting Economic Data with Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 28(1), pages 71-88, August.
    3. Bruno, Giancarlo, 2009. "Non-linear relation between industrial production and business surveys data," MPRA Paper 42337, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagric Timotej, 2003. "A Nonlinear Approach to Forecasting with Leading Economic Indicators," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(2), pages 1-20, July.
    2. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    3. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    4. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 95-156, National Bureau of Economic Research, Inc.
    5. James H. Stock & Mark W. Watson, 1990. "Business Cycle Properties of Selected U.S. Economic Time Series, 1959-1988," NBER Working Papers 3376, National Bureau of Economic Research, Inc.
    6. Ulrich Fritsche & Felix Marklein, 2001. "Leading Indicators of Euroland Business Cycles," Discussion Papers of DIW Berlin 238, DIW Berlin, German Institute for Economic Research.
    7. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    8. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    9. Ulrich Fritsche, 2001. "Do probit models help in forecasting turning points of German business cycles?," Macroeconomics 0012022, University Library of Munich, Germany.
    10. Timotej Jagric & Sebastjan Strasek, 2005. "A Nonlinear Extension Of The Nber Model For Short‐Run Forecasting Of Business Cycles," South African Journal of Economics, Economic Society of South Africa, vol. 73(3), pages 435-448, September.
    11. Robert Pater, 2014. "Are there two types of business cycles? a note on crisis detection," "e-Finanse", University of Information Technology and Management, Institute of Financial Research and Analysis, vol. 10(3), pages 1-28, December.
    12. James H. Stock & Mark W. Watson, 1990. "Business Cycle Properties of Selected U.S. Economic Time Series, 1959-1988," Working Papers 1990-1, Princeton University. Economics Department..
    13. Malik, Farooq & Nasereddin, Mahdi, 2006. "Forecasting output using oil prices: A cascaded artificial neural network approach," Journal of Economics and Business, Elsevier, vol. 58(2), pages 168-180.
    14. Ulrich FRITSCHE & Vladimir KOUZINE, 2010. "Prediction of Business Cycle Turning Points in Germany," EcoMod2004 330600054, EcoMod.
    15. Ulrich Fritsche & Vladimir Kuzin, 2002. "Do Leading Indicators Help to Predict Business Cycle Turning Points in Germany?," Discussion Papers of DIW Berlin 314, DIW Berlin, German Institute for Economic Research.
    16. Ioanna Konstantakopoulou & Eftymios Tsionas & Tryphon Kollintzas, 2009. "Stylized Facts of Prices and Interest Rates over the Business Cycle," Economics Bulletin, AccessEcon, vol. 29(4), pages 2613-2627.
    17. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    18. Apostolos Serletis & Ricardo Rangel-Ruiz, 2007. "Testing for Common Features in North American Energy Markets," World Scientific Book Chapters, in: Quantitative And Empirical Analysis Of Energy Markets, chapter 14, pages 172-187, World Scientific Publishing Co. Pte. Ltd..
    19. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    20. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    leading economic indicators; neural network; forecasting; aggregate economic activity;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlpep:v:2003:y:2003:i:1:id:207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.