IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i6p103-d566769.html
   My bibliography  Save this article

Adapting the Default Weighted Survival Analysis Modelling Approach to Model IFRS 9 LGD

Author

Listed:
  • Morne Joubert

    (Centre for Business Mathematics and Informatics, North-West University, Potchefstroom 2531, South Africa
    Current address: Internal box 576, Private bag X6001, Potchefstroom 2531, South Africa.
    These authors contributed equally to this work.)

  • Tanja Verster

    (Centre for Business Mathematics and Informatics, North-West University, Potchefstroom 2531, South Africa
    Current address: Internal box 576, Private bag X6001, Potchefstroom 2531, South Africa.
    These authors contributed equally to this work.)

  • Helgard Raubenheimer

    (Centre for Business Mathematics and Informatics, North-West University, Potchefstroom 2531, South Africa
    Current address: Internal box 576, Private bag X6001, Potchefstroom 2531, South Africa.
    These authors contributed equally to this work.)

  • Willem D. Schutte

    (Centre for Business Mathematics and Informatics, North-West University, Potchefstroom 2531, South Africa
    Current address: Internal box 576, Private bag X6001, Potchefstroom 2531, South Africa.
    These authors contributed equally to this work.)

Abstract

Survival analysis is one of the techniques that could be used to predict loss given default (LGD) for regulatory capital (Basel) purposes. When using survival analysis to model LGD, a proposed methodology is the default weighted survival analysis (DWSA) method. This paper is aimed at adapting the DWSA method (used to model Basel LGD) to estimate the LGD for International Financial Reporting Standard (IFRS) 9 impairment requirements. The DWSA methodology allows for over recoveries, default weighting and negative cashflows. For IFRS 9, this methodology should be adapted, as the estimated LGD is a function of in the expected credit losses (ECL). Our proposed IFRS 9 LGD methodology makes use of survival analysis to estimate the LGD. The Cox proportional hazards model allows for a baseline survival curve to be adjusted to produce survival curves for different segments of the portfolio. The forward-looking LGD values are adjusted for different macro-economic scenarios and the ECL is calculated for each scenario. These ECL values are probability weighted to produce a final ECL estimate. We illustrate our proposed IFRS 9 LGD methodology and ECL estimation on a dataset from a retail portfolio of a South African bank.

Suggested Citation

  • Morne Joubert & Tanja Verster & Helgard Raubenheimer & Willem D. Schutte, 2021. "Adapting the Default Weighted Survival Analysis Modelling Approach to Model IFRS 9 LGD," Risks, MDPI, vol. 9(6), pages 1-17, June.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:6:p:103-:d:566769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/6/103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/6/103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    2. Braun, Christian, 2004. "The Prediction Error of the Chain Ladder Method Applied to Correlated Run-off Triangles," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 399-423, November.
    3. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    4. Jiří Witzany & Michal Rychnovský & Pavel Charamza, 2012. "Survival Analysis in LGD Modeling," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2012(1), pages 6-27.
    5. Krüger, Steffen & Oehme, Toni & Rösch, Daniel & Scheule, Harald, 2018. "A copula sample selection model for predicting multi-year LGDs and Lifetime Expected Losses," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 246-262.
    6. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    7. Willem Daniel Schutte & Tanja Verster & Derek Doody & Helgard Raubenheimer & Peet Jacobus Coetzee & David McMillan, 2020. "A proposed benchmark model using a modularised approach to calculate IFRS 9 expected credit loss," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1735681-173, January.
    8. Sigrist, Fabio & Stahel, Werner A., 2011. "Using the Censored Gamma Distribution for Modeling Fractional Response Variables with an Application to Loss Given Default," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 673-710, November.
    9. Douw Gerbrand Breed & Tanja Verster & Willem D. Schutte & Naeem Siddiqi, 2019. "Developing an Impairment Loss Given Default Model Using Weighted Logistic Regression Illustrated on a Secured Retail Bank Portfolio," Risks, MDPI, vol. 7(4), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aneta Ptak-Chmielewska & Paweł Kopciuszewski & Anna Matuszyk, 2023. "Application of the kNN-Based Method and Survival Approach in Estimating Loss Given Default for Unresolved Cases," Risks, MDPI, vol. 11(2), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    2. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    3. Ruey-Ching Hwang & Chih-Kang Chu & Kaizhi Yu, 2021. "Predicting the Loss Given Default Distribution with the Zero-Inflated Censored Beta-Mixture Regression that Allows Probability Masses and Bimodality," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(3), pages 143-172, June.
    4. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    5. Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.
    6. Sopitpongstorn, Nithi & Silvapulle, Param & Gao, Jiti & Fenech, Jean-Pierre, 2021. "Local logit regression for loan recovery rate," Journal of Banking & Finance, Elsevier, vol. 126(C).
    7. Joseph L. Breeden, 2024. "An Age–Period–Cohort Framework for Profit and Profit Volatility Modeling," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
    8. Florian Kaposty & Philipp Klein & Matthias Löderbusch & Andreas Pfingsten, 2022. "Loss given default in SME leasing," Review of Managerial Science, Springer, vol. 16(5), pages 1561-1597, July.
    9. Chen, Rongda & Zhou, Hanxian & Jin, Chenglu & Zheng, Wei, 2019. "Modeling of recovery rate for a given default by non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    10. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    11. Douw Gerbrand Breed & Niel van Jaarsveld & Carsten Gerken & Tanja Verster & Helgard Raubenheimer, 2021. "Development of an Impairment Point in Time Probability of Default Model for Revolving Retail Credit Products: South African Case Study," Risks, MDPI, vol. 9(11), pages 1-22, November.
    12. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    13. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Corporate Loan Recovery Rates under Downturn Conditions in a Developing Economy: Evidence from Zimbabwe," Risks, MDPI, vol. 10(10), pages 1-24, October.
    14. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank.
    15. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    16. Cheng, Dan & Cirillo, Pasquale, 2018. "A reinforced urn process modeling of recovery rates and recovery times," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 1-17.
    17. Ruey-Ching Hwang & Huimin Chung & C. K. Chu, 2016. "A Two-Stage Probit Model for Predicting Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 50(3), pages 311-339, December.
    18. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.
    19. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2015. "Support vector regression for loss given default modelling," European Journal of Operational Research, Elsevier, vol. 240(2), pages 528-538.
    20. Aneta Ptak-Chmielewska & Paweł Kopciuszewski & Anna Matuszyk, 2023. "Application of the kNN-Based Method and Survival Approach in Estimating Loss Given Default for Unresolved Cases," Risks, MDPI, vol. 11(2), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:6:p:103-:d:566769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.