IDEAS home Printed from https://ideas.repec.org/a/prg/jnlaop/v2016y2016i1id496p15-32.html
   My bibliography  Save this article

Gas Swing Options: Introduction and Pricing using Monte Carlo Methods

Author

Listed:
  • Andrea Klimešová
  • Tomáš Václavík

Abstract

Motivated by the changing nature of the natural gas industry in the European Union, driven by the liberalisation process, we focus on the introduction and pricing of gas swing options. These options are embedded in typical gas sales agreements in the form of offtake flexibility concerning volume and time. The gas swing option is actually a set of several American puts on a spread between prices of two or more energy commodities. This fact, together with the fact that the energy markets are fundamentally different from traditional financial security markets, is important for our choice of valuation technique. Due to the specific features of the energy markets, the existing analytic approximations for spread option pricing are hardly applicable to our framework. That is why we employ Monte Carlo methods to model the spot price dynamics of the underlying commodities. The price of an arbitrarily chosen gas swing option is then computed in accordance with the concept of risk-neutral expectations. Finally, our result is compared with the real payoff from the option realised at the time of the option execution and the maximum ex-post payoff that the buyer could generate in case he knew the future, discounted to the original time of the option pricing.

Suggested Citation

  • Andrea Klimešová & Tomáš Václavík, 2016. "Gas Swing Options: Introduction and Pricing using Monte Carlo Methods," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2016(1), pages 15-32.
  • Handle: RePEc:prg:jnlaop:v:2016:y:2016:i:1:id:496:p:15-32
    DOI: 10.18267/j.aop.496
    as

    Download full text from publisher

    File URL: http://aop.vse.cz/doi/10.18267/j.aop.496.html
    Download Restriction: free of charge

    File URL: http://aop.vse.cz/doi/10.18267/j.aop.496.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.aop.496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. R. Miltersen, 2003. "Commodity price modelling that matches current observables: a new approach," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 51-58.
    2. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    3. Carol Alexander & Aanand Venkatramanan, 2007. "Analytic Approximations for Spread Options," ICMA Centre Discussion Papers in Finance icma-dp2007-11, Henley Business School, University of Reading.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    6. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 143-151, June.
    7. Geoffrey Poitras, 1998. "Spread options, exchange options, and arithmetic Brownian motion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 18(5), pages 487-517, August.
    8. N. Meinshausen & B. M. Hambly, 2004. "Monte Carlo Methods For The Valuation Of Multiple‐Exercise Options," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 557-583, October.
    9. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    3. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    4. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    5. Aintablian, Sebouh & Khoury, Wissam El, 2017. "A simulation on the presence of competing bidders in mergers and acquisitions," Finance Research Letters, Elsevier, vol. 22(C), pages 233-243.
    6. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, October.
    9. Bisht Deepak & Laha, A. K., 2017. "Pricing Option on Commodity Futures under String Shock," IIMA Working Papers WP 2017-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    10. Dibeh, Ghassan & Harmanani, Haidar M., 2007. "Option pricing during post-crash relaxation times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 357-365.
    11. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    12. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    13. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    14. P. Karlsson & K. F. Pilz & E. Schlögl, 2017. "Calibrating a market model with stochastic volatility to commodity and interest rate risk," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 907-925, June.
    15. Gonzalo Cortazar & Simon Gutierrez & Hector Ortega, 2016. "Empirical Performance of Commodity Pricing Models: When is it Worthwhile to Use a Stochastic Volatility Specification?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 457-487, May.
    16. Anders B. Trolle & Eduardo S. Schwartz, 2006. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," NBER Working Papers 12744, National Bureau of Economic Research, Inc.
    17. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    18. Leif Andersen, 2010. "Markov models for commodity futures: theory and practice," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 831-854.
    19. Crosby, John & Frau, Carme, 2022. "Jumps in commodity prices: New approaches for pricing plain vanilla options," Energy Economics, Elsevier, vol. 114(C).
    20. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.

    More about this item

    Keywords

    Energy markets; gas sales agreement; gas swing option; Monte Carlo simulations; spread option pricing;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlaop:v:2016:y:2016:i:1:id:496:p:15-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.