IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v380y2007icp357-365.html
   My bibliography  Save this article

Option pricing during post-crash relaxation times

Author

Listed:
  • Dibeh, Ghassan
  • Harmanani, Haidar M.

Abstract

This paper presents a model for option pricing in markets that experience financial crashes. The stochastic differential equation (SDE) of stock price dynamics is coupled to a post-crash market index. The resultant SDE is shown to have stock price and time dependent volatility. The partial differential equation (PDE) for call prices is derived using risk-neutral pricing. European call prices are then estimated using Monte Carlo and finite difference methods. Results of the model show that call option prices after the crash are systematically less than those predicted by the Black–Scholes model. This is a result of the effect of non-constant volatility of the model that causes a volatility skew.

Suggested Citation

  • Dibeh, Ghassan & Harmanani, Haidar M., 2007. "Option pricing during post-crash relaxation times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 357-365.
  • Handle: RePEc:eee:phsmap:v:380:y:2007:i:c:p:357-365
    DOI: 10.1016/j.physa.2007.02.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107001847
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.02.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Savit, R., 1989. "Nonlinearities And Chaotic Effects In Options Prices," Papers 184, Columbia - Center for Futures Markets.
    2. Chiarella, Carl & Dieci, Roberto & Gardini, Laura, 2002. "Speculative behaviour and complex asset price dynamics: a global analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 173-197, October.
    3. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 143-151, June.
    4. Dibeh, Ghassan, 2005. "Speculative dynamics in a time-delay model of asset prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 199-208.
    5. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    6. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youssef El-Khatib & Abdulnasser Hatemi-J, 2023. "On a regime switching illiquid high volatile prediction model for cryptocurrencies," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 51(2), pages 485-498, July.
    2. Gong, Pu & Dai, Jun, 2017. "Pricing real estate index options under stochastic interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 309-323.
    3. Youssef El-Khatib & Abdulnasser Hatemi-J, 2017. "Computation of second order price sensitivities in depressed markets," Papers 1705.02473, arXiv.org, revised Jan 2018.
    4. El-Khatib Youssef, 2014. "A Homotopy Analysis Method for the Option Pricing PDE in Post-Crash Markets," Mathematical Economics Letters, De Gruyter, vol. 2(3-4), pages 45-50, November.
    5. El-Khatib, Youssef & Hatemi-J, Abdulnasser, 2013. "On the pricing and hedging of options for highly volatile periods," MPRA Paper 45272, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    3. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    4. Wei-Cheng Chen & Wei-Ho Chung, 2019. "Option Pricing via Multi-path Autoregressive Monte Carlo Approach," Papers 1906.06483, arXiv.org.
    5. Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
    6. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Darae Jeong & Minhyun Yoo & Changwoo Yoo & Junseok Kim, 2019. "A Hybrid Monte Carlo and Finite Difference Method for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 111-124, January.
    9. Valeriy Ryabchenko & Sergey Sarykalin & Stan Uryasev, 2004. "Pricing European Options by Numerical Replication: Quadratic Programming with Constraints," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 301-333, September.
    10. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    11. Ghassan Dibeh & Haidar Harmanani, 2012. "A Stochastic Chartist–Fundamentalist Model with Time Delays," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 105-113, August.
    12. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    13. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    14. Jin-Chuan Duan & Geneviève Gauthier & Jean-Guy Simonato, 2001. "Asymptotic Distribution of the EMS Option Price Estimator," Management Science, INFORMS, vol. 47(8), pages 1122-1132, August.
    15. Tomáš Tichý, 2008. "Posouzení vybraných možností zefektivnění simulace Monte Carlo při opčním oceňování [Examination of selected improvement approaches to Monte Carlo simulation in option pricing]," Politická ekonomie, Prague University of Economics and Business, vol. 2008(6), pages 772-794.
    16. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    17. Pierdzioch, Christian, 2000. "Noise Traders? Trigger Rates, FX Options, and Smiles," Kiel Working Papers 970, Kiel Institute for the World Economy (IfW Kiel).
    18. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    19. Jong Jun Park & Geon Ho Choe, 2016. "A new variance reduction method for option pricing based on sampling the vertices of a simplex," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1165-1173, August.
    20. Paul Brockman & Mustafa Chowdhury, 1997. "Deterministic versus stochastic volatility: implications for option pricing models," Applied Financial Economics, Taylor & Francis Journals, vol. 7(5), pages 499-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:380:y:2007:i:c:p:357-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.