IDEAS home Printed from https://ideas.repec.org/a/prg/jnlaip/v2014y2014i3id54p280-287.html
   My bibliography  Save this article

Tools for Automatic Recognition of Persons and their Relationships in Unstructured Data
[Nástroje pro automatické rozpoznávání entit a jejich vztahů v nestrukturovaných textech]

Author

Listed:
  • Jaroslav Ráček
  • Jan Ministr

Abstract

The article deals with the specifics of the three layer architecture of software for automatic detection and identification of persons, objects and relationships in unstructured data. The data layer consists of data acquisition and data management modules. The application layer is composed of separate modules that can be combined to meet the needs of specific investigative tasks. The presentation layer makes the analysis of results for police investigation. The overall solution is demonstrated on develop the system ARIO which is applicable for a range of national and international institutions as well as private entities.

Suggested Citation

  • Jaroslav Ráček & Jan Ministr, 2014. "Tools for Automatic Recognition of Persons and their Relationships in Unstructured Data [Nástroje pro automatické rozpoznávání entit a jejich vztahů v nestrukturovaných textech]," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 2014(3), pages 280-287.
  • Handle: RePEc:prg:jnlaip:v:2014:y:2014:i:3:id:54:p:280-287
    DOI: 10.18267/j.aip.54
    as

    Download full text from publisher

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.54.html
    Download Restriction: free of charge

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.54.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.aip.54?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.
    2. Moshe Koppel & Jonathan Schler & Shlomo Argamon, 2009. "Computational methods in authorship attribution," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(1), pages 9-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeev Volkovich, 2020. "A Short-Patterning of the Texts Attributed to Al Ghazali: A “Twitter Look” at the Problem," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    2. Zavala, Araceli & Ramirez-Marquez, Jose Emmanuel, 2019. "Visual analytics for identifying product disruptions and effects via social media," International Journal of Production Economics, Elsevier, vol. 208(C), pages 544-559.
    3. Mike Thelwall, 2017. "Avoiding obscure topics and generalising findings produces higher impact research," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 307-320, January.
    4. Chunneng Huang & Tianjun Fu & Hsinchun Chen, 2010. "Text‐based video content classification for online video‐sharing sites," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(5), pages 891-906, May.
    5. Silvia Corbara & Alejandro Moreo & Fabrizio Sebastiani, 2023. "Syllabic quantity patterns as rhythmic features for Latin authorship attribution," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 128-141, January.
    6. Ankita Dhar & Himadri Mukherjee & Shibaprasad Sen & Md Obaidullah Sk & Amitabha Biswas & Teresa Gonçalves & Kaushik Roy, 2022. "Author Identification from Literary Articles with Visual Features: A Case Study with Bangla Documents," Future Internet, MDPI, vol. 14(10), pages 1-20, September.
    7. Stefano Sbalchiero & Maria Stella Righettini, 2017. "Rhetorical manifestation of institutional transformation," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1279-1296, May.
    8. Matthew J. Schneider & Shawn Mankad, 2021. "A Two-Stage Authorship Attribution Method Using Text and Structured Data for De-Anonymizing User-Generated Content," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 8(3), pages 66-83, September.
    9. Kargin, Vladislav, 2016. "On variation of word frequencies in Russian literary texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 328-334.
    10. Mingfang Wu & David Hawking & Andrew Turpin & Falk Scholer, 2012. "Using anchor text for homepage and topic distillation search tasks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(6), pages 1235-1255, June.
    11. Haoran Zhu & Lei Lei, 2022. "The Research Trends of Text Classification Studies (2000–2020): A Bibliometric Analysis," SAGE Open, , vol. 12(2), pages 21582440221, April.
    12. Song, Min & Kim, Erin Hea-Jin & Kim, Ha Jin, 2015. "Exploring author name disambiguation on PubMed-scale," Journal of Informetrics, Elsevier, vol. 9(4), pages 924-941.
    13. de Arruda, Henrique F. & Marinho, Vanessa Q. & Lima, Thales S. & Amancio, Diego R. & Costa, Luciano da F., 2018. "An image analysis approach to text analytics based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 110-120.
    14. Refat Aljumily, 2015. "Hierarchical and Non-Hierarchical Linear and Non-Linear Clustering Methods to “Shakespeare Authorship Question”," Social Sciences, MDPI, vol. 4(3), pages 1-42, September.
    15. Gordon J. Ross, 2020. "Tracking the evolution of literary style via Dirichlet–multinomial change point regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 149-167, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlaip:v:2014:y:2014:i:3:id:54:p:280-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.