IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v74y2023i1p128-141.html
   My bibliography  Save this article

Syllabic quantity patterns as rhythmic features for Latin authorship attribution

Author

Listed:
  • Silvia Corbara
  • Alejandro Moreo
  • Fabrizio Sebastiani

Abstract

It is well known that, within the Latin production of written text, peculiar metric schemes were followed not only in poetic compositions, but also in many prose works. Such metric patterns were based on so‐called syllabic quantity, that is, on the length of the involved syllables, and there is substantial evidence suggesting that certain authors had a preference for certain metric patterns over others. In this research we investigate the possibility to employ syllabic quantity as a base for deriving rhythmic features for the task of computational authorship attribution of Latin prose texts. We test the impact of these features on the authorship attribution task when combined with other topic‐agnostic features. Our experiments, carried out on three different datasets using support vector machines (SVMs) show that rhythmic features based on syllabic quantity are beneficial in discriminating among Latin prose authors.

Suggested Citation

  • Silvia Corbara & Alejandro Moreo & Fabrizio Sebastiani, 2023. "Syllabic quantity patterns as rhythmic features for Latin authorship attribution," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 128-141, January.
  • Handle: RePEc:bla:jinfst:v:74:y:2023:i:1:p:128-141
    DOI: 10.1002/asi.24660
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.24660
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.24660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacques Savoy, 2019. "Authorship of Pauline epistles revisited," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(10), pages 1089-1097, October.
    2. Efstathios Stamatatos, 2018. "Masking topic†related information to enhance authorship attribution," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 461-473, March.
    3. Justin Anthony Stover & Yaron Winter & Moshe Koppel & Mike Kestemont, 2016. "Computational authorship verification method attributes a new work to a major 2nd century African author," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(1), pages 239-242, January.
    4. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
    5. Moshe Koppel & Yaron Winter, 2014. "Determining if two documents are written by the same author," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(1), pages 178-187, January.
    6. Rong Zheng & Jiexun Li & Hsinchun Chen & Zan Huang, 2006. "A framework for authorship identification of online messages: Writing‐style features and classification techniques," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 378-393, February.
    7. Efstathios Stamatatos, 2009. "A survey of modern authorship attribution methods," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 538-556, March.
    8. Moshe Koppel & Jonathan Schler & Shlomo Argamon, 2009. "Computational methods in authorship attribution," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(1), pages 9-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Arruda, Henrique F. & Marinho, Vanessa Q. & Lima, Thales S. & Amancio, Diego R. & Costa, Luciano da F., 2018. "An image analysis approach to text analytics based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 110-120.
    2. Stefano Sbalchiero & Maria Stella Righettini, 2017. "Rhetorical manifestation of institutional transformation," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1279-1296, May.
    3. Matthew J. Schneider & Shawn Mankad, 2021. "A Two-Stage Authorship Attribution Method Using Text and Structured Data for De-Anonymizing User-Generated Content," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 8(3), pages 66-83, September.
    4. Kargin, Vladislav, 2016. "On variation of word frequencies in Russian literary texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 328-334.
    5. Jacques Savoy & Olena Zubaryeva, 2012. "Simple and efficient classification scheme based on specific vocabulary," Computational Management Science, Springer, vol. 9(3), pages 401-415, August.
    6. Mingfang Wu & David Hawking & Andrew Turpin & Falk Scholer, 2012. "Using anchor text for homepage and topic distillation search tasks," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(6), pages 1235-1255, June.
    7. Haoran Zhu & Lei Lei, 2022. "The Research Trends of Text Classification Studies (2000–2020): A Bibliometric Analysis," SAGE Open, , vol. 12(2), pages 21582440221, April.
    8. Daniel Embarcadero-Ruiz & Helena Gómez-Adorno & Alberto Embarcadero-Ruiz & Gerardo Sierra, 2022. "Graph-Based Siamese Network for Authorship Verification," Mathematics, MDPI, vol. 10(2), pages 1-24, January.
    9. Chunneng Huang & Tianjun Fu & Hsinchun Chen, 2010. "Text‐based video content classification for online video‐sharing sites," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(5), pages 891-906, May.
    10. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    11. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    12. Wittkowski, Knut M., 2003. "Novel Methods for Multivariate Ordinal Data applied to Genetic Diplotypes, Genomic Pathways, Risk Profiles, and Pattern Similarity," MPRA Paper 4570, University Library of Munich, Germany.
    13. Sauter, Philipp A. & Mußhoff, Oliver & Möhring, Bernhard & Wilhelm, Stefan, 2016. "Faustmann vs. real options theory – An experimental investigation of foresters’ harvesting decisions," Journal of Forest Economics, Elsevier, vol. 24(C), pages 1-20.
    14. Citlali Calderon & Lorena Carrete & Jorge Vera-Martínez & María Esther Gloria-Quintero & María del Socorro Romero-Figueroa, 2021. "A Social Marketing Intervention to Improve Treatment Adherence in Patients with Type 1 Diabetes," IJERPH, MDPI, vol. 18(7), pages 1-14, March.
    15. Ankita Dhar & Himadri Mukherjee & Shibaprasad Sen & Md Obaidullah Sk & Amitabha Biswas & Teresa Gonçalves & Kaushik Roy, 2022. "Author Identification from Literary Articles with Visual Features: A Case Study with Bangla Documents," Future Internet, MDPI, vol. 14(10), pages 1-20, September.
    16. Peter Cummings & Barbara McKnight, 2004. "Analysis of matched cohort data," Stata Journal, StataCorp LP, vol. 4(3), pages 274-281, September.
    17. Bester Tawona Mudereri & Elfatih M. Abdel-Rahman & Shepard Ndlela & Louisa Delfin Mutsa Makumbe & Christabel Chiedza Nyanga & Henri E. Z. Tonnang & Samira A. Mohamed, 2022. "Integrating the Strength of Multi-Date Sentinel-1 and -2 Datasets for Detecting Mango ( Mangifera indica L.) Orchards in a Semi-Arid Environment in Zimbabwe," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    18. Am鬩e Charles & Olivier Darn頍 & Jae H. Kim & Etienne Redor, 2016. "Stock exchange mergers and market efficiency," Applied Economics, Taylor & Francis Journals, vol. 48(7), pages 576-589, February.
    19. Oleg Sobchuk & Artjoms Šeļa, 2024. "Computational thematics: comparing algorithms for clustering the genres of literary fiction," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    20. Nosi, Costanza & D’Agostino, Antonella & Pratesi, Carlo Alberto & Barbarossa, Camilla, 2021. "Evaluating a social marketing campaign on healthy nutrition and lifestyle among primary-school children: A mixed-method research design," Evaluation and Program Planning, Elsevier, vol. 89(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:74:y:2023:i:1:p:128-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.