IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0261335.html
   My bibliography  Save this article

Contact network analysis of Covid-19 in tourist areas——Based on 333 confirmed cases in China

Author

Listed:
  • Zhangbo Yang
  • Jingen Song
  • Shanxing Gao
  • Hui Wang
  • Yingfei Du
  • Qiuyue Lin

Abstract

The spread of infectious diseases is highly related to the structure of human networks. Analyzing the contact network of patients can help clarify the path of virus transmission. Based on confirmed cases of COVID-19 in two major tourist provinces in southern China (Hainan and Yunnan), this study analyzed the epidemiological characteristics and dynamic contact network structure of patients in these two places. Results show that: (1) There are more female patients than males in these two districts and most are imported cases, with an average age of 45 years. Medical measures were given in less than 3 days after symptoms appeared. (2) The whole contact network of the two areas is disconnected. There are a small number of transmission chains in the network. The average values of degree centrality, betweenness centrality, and PageRank index are small. Few patients have a relatively high contact number. There is no superspreader in the network.

Suggested Citation

  • Zhangbo Yang & Jingen Song & Shanxing Gao & Hui Wang & Yingfei Du & Qiuyue Lin, 2021. "Contact network analysis of Covid-19 in tourist areas——Based on 333 confirmed cases in China," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-13, December.
  • Handle: RePEc:plo:pone00:0261335
    DOI: 10.1371/journal.pone.0261335
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261335
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0261335&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0261335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fredrik Liljeros & Christofer R. Edling & Luís A. Nunes Amaral & H. Eugene Stanley & Yvonne Åberg, 2001. "The web of human sexual contacts," Nature, Nature, vol. 411(6840), pages 907-908, June.
    2. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    2. X. Angela Yao & Andrew Crooks & Bin Jiang & Jukka Krisp & Xintao Liu & Haosheng Huang, 2023. "An overview of urban analytical approaches to combating the Covid-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1133-1143, June.
    3. Yin Huang & Runda Liu & Shumin Huang & Gege Yang & Xiaofan Zhang & Yin Qin & Lisha Mao & Sishi Sheng & Biao Huang, 2021. "Imbalance and breakout in the post-epidemic era: Research into the spatial patterns of freight demand network in six provinces of central China," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-18, April.
    4. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    5. Courtney D. Corley & Diane J. Cook & Armin R. Mikler & Karan P. Singh, 2010. "Text and Structural Data Mining of Influenza Mentions in Web and Social Media," IJERPH, MDPI, vol. 7(2), pages 1-20, February.
    6. Matthew Eden & Rebecca Castonguay & Buyannemekh Munkhbat & Hari Balasubramanian & Chaitra Gopalappa, 2021. "Agent-based evolving network modeling: a new simulation method for modeling low prevalence infectious diseases," Health Care Management Science, Springer, vol. 24(3), pages 623-639, September.
    7. Mingke Xie & Yang Chen & Luliang Tang, 2022. "Exploring the Impact of Localized COVID-19 Events on Intercity Mobility during the Normalized Prevention and Control Period in China," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    8. Pan, Yu & He, Sylvia Y., 2022. "Analyzing COVID-19’s impact on the travel mobility of various social groups in China’s Greater Bay Area via mobile phone big data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 263-281.
    9. Tu, Yunbo & Meng, Xinzhu & Alzahrani, Abdullah Khames & Zhang, Tonghua, 2023. "Multi-objective optimization and nonlinear dynamics for sub-healthy COVID-19 epidemic model subject to self-diffusion and cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Jiansuo Pei & Gaaitzen de Vries & Meng Zhang, 2022. "International trade and Covid‐19: City‐level evidence from China's lockdown policy," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 670-695, June.
    11. Sander, L.M & Warren, C.P & Sokolov, I.M, 2003. "Epidemics, disorder, and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 325(1), pages 1-8.
    12. Meng, Xin & Guo, Mingxue & Gao, Ziyou & Yang, Zhenzhen & Yuan, Zhilu & Kang, Liujiang, 2022. "The effects of Wuhan highway lockdown measures on the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 117(C), pages 169-180.
    13. Ye, Maoxin & Lyu, Zeyu, 2020. "Trust, risk perception, and COVID-19 infections: Evidence from multilevel analyses of combined original dataset in China," Social Science & Medicine, Elsevier, vol. 265(C).
    14. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    15. Zhou, Xin & Liao, Wenzhu, 2023. "Research on demand forecasting and distribution of emergency medical supplies using an agent-based model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    16. Yang, Senyan & Ning, Lianju & Jiang, Tingfeng & He, Yingqi, 2021. "Dynamic impacts of COVID-19 pandemic on the regional express logistics: Evidence from China," Transport Policy, Elsevier, vol. 111(C), pages 111-124.
    17. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    18. Fang, Hanming & Wang, Long & Yang, Yang, 2020. "Human mobility restrictions and the spread of the Novel Coronavirus (2019-nCoV) in China," Journal of Public Economics, Elsevier, vol. 191(C).
    19. Kwang-Sub Lee & Jin Ki Eom, 2024. "Systematic literature review on impacts of COVID-19 pandemic and corresponding measures on mobility," Transportation, Springer, vol. 51(5), pages 1907-1961, October.
    20. Qiushi Chen & Michiko Tsubaki & Yasuhiro Minami & Kazutoshi Fujibayashi & Tetsuro Yumoto & Junzo Kamei & Yuka Yamada & Hidenori Kominato & Hideki Oono & Toshio Naito, 2021. "Using Mobile Phone Data to Estimate the Relationship between Population Flow and Influenza Infection Pathways," IJERPH, MDPI, vol. 18(14), pages 1-32, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0261335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.