IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0260715.html
   My bibliography  Save this article

“Taking action” to reduce pain—Has interpretation of the motor adaptation to pain been too simplistic?

Author

Listed:
  • Michael Bergin
  • Kylie Tucker
  • Bill Vicenzino
  • Paul W Hodges

Abstract

Movement adapts during acute pain. This is assumed to reduce nociceptive input, but the interpretation may not be straightforward. We investigated whether movement adaptation during pain reflects a purposeful search for a less painful solution. Three groups of participants performed two blocks (Baseline, Experimental) of wrist movements in the radial-ulnar direction. For the Control group (n = 10) both blocks were painfree. In two groups, painful electrical stimulation was applied at the elbow in Experimental conditions when the wrist crossed radial-ulnar neutral. Different stimulus intensities were given for specific wrist angles in a secondary direction (flexion-extension) as the wrist passed radial-ulnar neutral (Pain 5–1 group:painful stimulation at ~5 or ~1/10—n = 21; Pain 5–0 group:~5 or 0(no stimulation)/10—n = 6)). Participants were not informed about the less painful alternative and could use any strategy. We recorded the percentage of movements using the wrist flexion/extension alignment that evoked the lower intensity noxious stimulus, movement variability, and change in wrist/forearm alignment during pain. Participants adapted their strategy of wrist movement during pain provocation and reported less pain over time. Three adaptations of wrist movement were observed; (i) greater use of the wrist alignment with no/less noxious input (Pain 5–1, n = 8/21; Pain 5–0, n = 2/6); (ii) small (n = 9/21; n = 3/6) or (iii) large (n = 4/21; n = 1/6) change of wrist/forearm alignment to a region that was not allocated to provide an actual reduction in noxious stimulus. Pain reduction was achieved with “taking action” to relieve pain and did not depend on reduced noxious stimulus.

Suggested Citation

  • Michael Bergin & Kylie Tucker & Bill Vicenzino & Paul W Hodges, 2021. "“Taking action” to reduce pain—Has interpretation of the motor adaptation to pain been too simplistic?," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0260715
    DOI: 10.1371/journal.pone.0260715
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260715
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0260715&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0260715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    2. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    4. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    6. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    7. Guido Marco Cicchini & Giovanni D’Errico & David Charles Burr, 2022. "Crowding results from optimal integration of visual targets with contextual information," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Alice Soldà & Changxia Ke & Lionel Page & William von Hippel, 2020. "Strategically delusional," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 604-631, September.
    9. Daniel Bjasch & Christopher J Bockisch & Dominik Straumann & Alexander A Tarnutzer, 2012. "Differential Effects of Visual Feedback on Subjective Visual Vertical Accuracy and Precision," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    10. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    11. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    12. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    13. Nils Neupärtl & Fabian Tatai & Constantin A Rothkopf, 2020. "Intuitive physical reasoning about objects’ masses transfers to a visuomotor decision task consistent with Newtonian physics," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-26, October.
    14. Salvador Dura-Bernal & Thomas Wennekers & Susan L Denham, 2012. "Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical Bayesian Networks and Belief Propagation," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-25, November.
    15. Jonathan B Dingwell & Joby John & Joseph P Cusumano, 2010. "Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    16. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    17. Siqueira, Jose Ribamar & ter Horst, Enrique & Molina, German & Losada, Mauricio & Mateus, Marelby Amado, 2020. "A Bayesian examination of the relationship of internal and external touchpoints in the customer experience process across various service environments," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    18. Tyler Cluff & Ramesh Balasubramaniam, 2009. "Motor Learning Characterized by Changing Lévy Distributions," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-7, June.
    19. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2017. "Target Uncertainty Mediates Sensorimotor Error Correction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    20. Daniel Blustein & Ahmed Shehata & Kevin Englehart & Jonathon Sensinger, 2018. "Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0260715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.