IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0260689.html
   My bibliography  Save this article

Vague data analysis using neutrosophic Jarque–Bera test

Author

Listed:
  • Muhammad Aslam
  • Rehan Ahmad Khan Sherwani
  • Muhammad Saleem

Abstract

In decision-making problems, the researchers’ application of parametric tests is the first choice due to their wide applicability, reliability, and validity. The common parametric tests require the validation of the normality assumption even for large sample sizes in some cases. Jarque-Bera test is among one of the methods available in the literature used to serve the purpose. One of the Jarque-Bera test restrictions is the computational limitations available only for the data in exact form. The operational procedure of the test is helpless for the interval-valued data. The interval-valued data generally occurs in situations under fuzzy logic or indeterminate state of the outcome variable and is often called neutrosophic form. The present research modifies the existing statistic of the Jarque-Bera test for the interval-valued data. The modified design and operational procedure of the newly proposed Jarque-Bera test will be useful to assess the normality of a data set under the neutrosophic environment. The proposed neutrosophic Jarque-Bera test is applied and compared with its existing form with the help of a numerical example of real gold mines data generated under the fuzzy environment. The study’s findings suggested that the proposed test is effective, informative, and suitable to be applied in indeterminacy compared to the existing Jarque–Bera test.

Suggested Citation

  • Muhammad Aslam & Rehan Ahmad Khan Sherwani & Muhammad Saleem, 2021. "Vague data analysis using neutrosophic Jarque–Bera test," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-9, December.
  • Handle: RePEc:plo:pone00:0260689
    DOI: 10.1371/journal.pone.0260689
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260689
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0260689&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0260689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thorsten Thadewald & Herbert Buning, 2007. "Jarque-Bera Test and its Competitors for Testing Normality - A Power Comparison," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 87-105.
    2. Kim, Namhyun, 2016. "A robustified Jarque–Bera test for multivariate normality," Economics Letters, Elsevier, vol. 140(C), pages 48-52.
    3. Youngseok Choi & Habin Lee & Zahir Irani, 2018. "Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector," Annals of Operations Research, Springer, vol. 270(1), pages 75-104, November.
    4. Van Cutsem, Bernard & Gath, Isak, 1993. "Detection of outliers and robust estimation using fuzzy clustering," Computational Statistics & Data Analysis, Elsevier, vol. 15(1), pages 47-61, January.
    5. Sarat Chandra Nayak & Bijan Bihari Misra, 2019. "A chemical-reaction-optimization-based neuro-fuzzy hybrid network for stock closing price prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-34, December.
    6. Gel, Yulia R. & Gastwirth, Joseph L., 2008. "A robust modification of the Jarque-Bera test of normality," Economics Letters, Elsevier, vol. 99(1), pages 30-32, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    2. Seonga Cho & Sewon Kim & Bong Joo Lee, 2024. "Correlations between Hotspots of Child Maltreatment and Neighborhood-Level Interventions," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 17(5), pages 2099-2121, October.
    3. Gel, Yulia R., 2010. "Test of fit for a Laplace distribution against heavier tailed alternatives," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 958-965, April.
    4. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    5. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    6. Shalit, Haim, 2012. "Using OLS to test for normality," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2050-2058.
    7. Timothy Kiessling & Lars Isaksson & Burze Yasar, 2016. "Market Orientation and CSR: Performance Implications," Journal of Business Ethics, Springer, vol. 137(2), pages 269-284, August.
    8. Sudersan Behera & Sarat Chandra Nayak & A. V. S. Pavan Kumar, 2024. "Evaluating the Performance of Metaheuristic Based Artificial Neural Networks for Cryptocurrency Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1219-1258, August.
    9. George Lăzăroiu & Luminița Ionescu & Cristian Uță & Iulian Hurloiu & Mihai Andronie & Irina Dijmărescu, 2020. "Environmentally Responsible Behavior and Sustainability Policy Adoption in Green Public Procurement," Sustainability, MDPI, vol. 12(5), pages 1-12, March.
    10. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    11. Aristotelis Mavidis & Dimitris Folinas, 2022. "From Public E-Procurement 3.0 to E-Procurement 4.0; A Critical Literature Review," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    12. A. H. M. Mehbub Anwar & Mohammad Altelmesani & Abdulrahman Alwosheel, 2024. "Unveiling the causal nexus between Saudi’s seaborne trade and economy: evidence from an ARDL model," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-21, December.
    13. Tom Broekel & Thomas Brenner, 2011. "Regional factors and innovativeness: an empirical analysis of four German industries," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(1), pages 169-194, August.
    14. Wu, Wanshan & Tiwari, Aviral Kumar & Gozgor, Giray & Leping, Huang, 2021. "Does economic policy uncertainty affect cryptocurrency markets? Evidence from Twitter-based uncertainty measures," Research in International Business and Finance, Elsevier, vol. 58(C).
    15. Nepal, Rabindra & al Irsyad, M. Indra & Nepal, Sanjay Kumar, 2018. "Tourist arrivals, energy consumption and pollutant emissions in a developing economy–implications for sustainable tourism," Working Papers 2018-10, University of Tasmania, Tasmanian School of Business and Economics.
    16. Kucherov, Dmitry G. & Tsybova, Victoria S. & Yu. Lisovskaia, Antonina & Alkanova, Olga N., 2022. "Brand orientation, employer branding and internal branding: Do they effect on recruitment during the COVID-19 pandemic?," Journal of Business Research, Elsevier, vol. 151(C), pages 126-137.
    17. AlNuaimi, Bader Khamis & Khan, Mehmood & Ajmal, Mian M., 2021. "The role of big data analytics capabilities in greening e-procurement: A higher order PLS-SEM analysis," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    18. Tanweer Ul Islam, 2018. "Preliminary Tests of Homogeneity - Type I Error Rates under Non-Normality," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(5), pages 144-150, May.
    19. Pora, Pierre & Wilner, Lionel, 2020. "A decomposition of labor earnings growth: Recovering Gaussianity?," Labour Economics, Elsevier, vol. 63(C).
    20. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0260689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.