IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259780.html
   My bibliography  Save this article

Health-related vulnerability to climate extremes in homoclimatic zones of Amazonia and Northeast region of Brazil

Author

Listed:
  • Lara de Melo Barbosa Andrade
  • Gilvan Ramalho Guedes
  • Kenya Valeria Micaela de Souza Noronha
  • Cláudio Moisés Santos e Silva
  • Jéferson Pereira Andrade
  • Albert Smith Feitosa Suassuna Martins

Abstract

Amazonia and the Northeast region of Brazil exhibit the highest levels of climate vulnerability in the country. While Amazonia is characterized by an extremely hot and humid climate and hosts the world largest rainforest, the Northeast is home to sharp climatic contrasts, ranging from rainy areas along the coast to semiarid regions that are often affected by droughts. Both regions are subject to extremely high temperatures and are susceptible to many tropical diseases. This study develops a multidimensional Extreme Climate Vulnerability Index (ECVI) for Brazilian Amazonia and the Northeast region based on the Alkire-Foster method. Vulnerability is defined by three components, encompassing exposure (proxied by seven climate extreme indicators), susceptibility (proxied by sociodemographic indicators), and adaptive capacity (proxied by sanitation conditions, urbanization rate, and healthcare provision). In addition to the estimated vulnerability levels and intensity, we break down the ECVI by indicators, dimensions, and regions, in order to explore how the incidence levels of climate-sensitive infectious and parasitic diseases correlate with regional vulnerability. We use the Grade of Membership method to reclassify the mesoregions into homoclimatic zones based on extreme climatic events, so climate and population/health data can be analyzed at comparable resolutions. We find two homoclimatic zones: Extreme Rain (ER) and Extreme Drought and High Temperature (ED-HT). Vulnerability is higher in the ED-HT areas than in the ER. The contribution of each dimension to overall vulnerability levels varies by homoclimatic zone. In the ER zone, adaptive capacity (39%) prevails as the main driver of vulnerability among the three dimensions, in contrast with the approximately even dimensional contribution in the ED-HT. When we compare areas by disease incidence levels, exposure emerges as the most influential dimension. Our results suggest that climate can exacerbate existing infrastructure deficiencies and socioeconomic conditions that are correlated with tropical disease incidence in impoverished areas.

Suggested Citation

  • Lara de Melo Barbosa Andrade & Gilvan Ramalho Guedes & Kenya Valeria Micaela de Souza Noronha & Cláudio Moisés Santos e Silva & Jéferson Pereira Andrade & Albert Smith Feitosa Suassuna Martins, 2021. "Health-related vulnerability to climate extremes in homoclimatic zones of Amazonia and Northeast region of Brazil," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-24, November.
  • Handle: RePEc:plo:pone00:0259780
    DOI: 10.1371/journal.pone.0259780
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259780
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259780&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tonmoy Islam, T.M., 2014. "An exercise to evaluate an anti-poverty program with multiple outcomes using program evaluation," Economics Letters, Elsevier, vol. 122(2), pages 365-369.
    2. Hoffmann, Roman & Muttarak, Raya, 2017. "Learn from the Past, Prepare for the Future: Impacts of Education and Experience on Disaster Preparedness in the Philippines and Thailand," World Development, Elsevier, vol. 96(C), pages 32-51.
    3. Alex Sherbinin, 2014. "Climate change hotspots mapping: what have we learned?," Climatic Change, Springer, vol. 123(1), pages 23-37, March.
    4. Letícia J. Marteleto & Gilvan Guedes & Raquel Z. Coutinho & Abigail Weitzman, 2020. "Live Births and Fertility Amid the Zika Epidemic in Brazil," Demography, Springer;Population Association of America (PAA), vol. 57(3), pages 843-872, June.
    5. David J. Frame & Suzanne M. Rosier & Ilan Noy & Luke J. Harrington & Trevor Carey-Smith & Sarah N. Sparrow & Dáithí A. Stone & Samuel M. Dean, 2020. "Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought," Climatic Change, Springer, vol. 162(2), pages 781-797, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas H. Douthat & Fahmida Akhter & Rachelle Sanderson & Jerrod Penn, 2023. "Stakeholder Perceptions about Incorporating Externalities and Vulnerability into Benefit–Cost Analysis Tools for Watershed Flood Risk Mitigation," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    2. William G. Moseley, 2016. "Agriculture on the Brink: Climate Change, Labor and Smallholder Farming in Botswana," Land, MDPI, vol. 5(3), pages 1-14, June.
    3. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    4. Floris C. Boogaard & Guri Venvik & Rui L. Pedroso de Lima & Ana C. Cassanti & Allard H. Roest & Antal Zuurman, 2020. "ClimateCafé: An Interdisciplinary Educational Tool for Sustainable Climate Adaptation and Lessons Learned," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    5. Zhixing Ma & Shili Guo & Xin Deng & Dingde Xu, 2021. "Community resilience and resident's disaster preparedness: evidence from China's earthquake-stricken areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 567-591, August.
    6. Naidoo, Dhesigen & Nhamo, Luxon & Mpandeli, Sylvester & Sobratee, Nafisa & Senzanje, Aidan & Liphadzi, Stanley & Slotow, Rob & Jacobson, Michael & Modi, Albert T. & Mabhaudhi, Tafadzwanashe, 2021. "Operationalising the water-energy-food nexus through the theory of change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Zhenlong Jiang & Yudi Chen & Ting-Yeh Yang & Wenying Ji & Zhijie (Sasha) Dong & Ran Ji, 2023. "Leveraging Machine Learning and Simulation to Advance Disaster Preparedness Assessments through FEMA National Household Survey Data," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    8. Masahiro Shoji & Yoko Takafuji & Tetsuya Harada, 2020. "Formal education and disaster response of children: evidence from coastal villages in Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2183-2205, September.
    9. Sophie Song and Katsushi S. Imai, 2018. "Does the Hunger Safety Net Programme Reduce Multidimensional Poverty? Evidence from Kenya," OPHI Working Papers ophiwp124.pdf, Queen Elizabeth House, University of Oxford.
    10. Omolola M. Adeola & Abel Ramoelo & Brian Mantlana & Oscar Mokotedi & Wongalethu Silwana & Philemon Tsele, 2022. "Review of Publications on the Water-Energy-Food Nexus and Climate Change Adaptation Using Bibliometric Analysis: A Case Study of Africa," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    11. Shine George & P. P. Anil Kumar, 2022. "Indicator-based assessment of capacity development for disaster preparedness in the Indian context," Environment Systems and Decisions, Springer, vol. 42(3), pages 417-435, September.
    12. Dingde Xu & Zhuolin Yong & Xin Deng & Yi Liu & Kai Huang & Wenfeng Zhou & Zhixing Ma, 2019. "Financial Preparation, Disaster Experience, and Disaster Risk Perception of Rural Households in Earthquake-Stricken Areas: Evidence From the Wenchuan and Lushan Earthquakes in China’s Sichuan Province," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    13. Xue Yang & Shili Guo & Xin Deng & Dingde Xu, 2021. "Livelihood Adaptation of Rural Households under Livelihood Stress: Evidence from Sichuan Province, China," Agriculture, MDPI, vol. 11(6), pages 1-19, May.
    14. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    15. Martin Munashe Chari & Leocadia Zhou & Hamisai Hamandawana, 2023. "Linking Satellite, Land Capability, and Socio-Economic Data for Local-Level Climate-Change-Adaptive Capacity Assessments and Decision Support," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    16. Tomoyuki Takabatake & Nanami Hasegawa, 2022. "Relative Preference for Living in a Safer Place from Natural Disasters: A Case Study at Tokyo, Japan," Land, MDPI, vol. 11(10), pages 1-16, October.
    17. Zhang, Dongna & Dai, Xingyu & Wang, Qunwei & Lau, Chi Keung Marco, 2023. "Impacts of weather conditions on the US commodity markets systemic interdependence across multi-timescales," Energy Economics, Elsevier, vol. 123(C).
    18. Zhineng Hu & Jing Ma & Qiong Feng & C. Patrick Scott & Hani I. Mesak, 2022. "The detection dilemma of marginally non‐poor households in poverty alleviation evaluation: Evidence from a linear quantile mixed model," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1491-1517, August.
    19. Yingying Sun & Ziqiang Han, 2018. "Climate Change Risk Perception in Taiwan: Correlation with Individual and Societal Factors," IJERPH, MDPI, vol. 15(1), pages 1-12, January.
    20. Elisabeth A. Lloyd & Theodore G. Shepherd, 2021. "Climate change attribution and legal contexts: evidence and the role of storylines," Climatic Change, Springer, vol. 167(3), pages 1-13, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.