IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0251582.html
   My bibliography  Save this article

Two-stage battery recharge scheduling and vehicle-charger assignment policy for dynamic electric dial-a-ride services

Author

Listed:
  • Tai-Yu Ma

Abstract

Coordinating the charging scheduling of electric vehicles for dynamic dial-a-ride services is challenging considering charging queuing delays and stochastic customer demand. We propose a new two-stage solution approach to handle dynamic vehicle charging scheduling to minimize the costs of daily charging operations of the fleet. The approach comprises two components: daily vehicle charging scheduling and online vehicle–charger assignment. A new battery replenishment model is proposed to obtain the vehicle charging schedules by minimizing the costs of vehicle daily charging operations while satisfying vehicle driving needs to serve customers. In the second stage, an online vehicle–charger assignment model is developed to minimize the total vehicle idle time for charges by considering queuing delays at the level of chargers. An efficient Lagrangian relaxation algorithm is proposed to solve the large-scale vehicle-charger assignment problem with small optimality gaps. The approach is applied to a realistic dynamic dial-a-ride service case study in Luxembourg and compared with the nearest charging station charging policy and first-come-first-served minimum charging delay policy under different charging infrastructure scenarios. Our computational results show that the approach can achieve significant savings for the operator in terms of charging waiting times (–74.9%), charging times (–38.6%), and charged energy costs (–27.4%). A sensitivity analysis is conducted to evaluate the impact of the different model parameters, showing the scalability and robustness of the approach in a stochastic environment.

Suggested Citation

  • Tai-Yu Ma, 2021. "Two-stage battery recharge scheduling and vehicle-charger assignment policy for dynamic electric dial-a-ride services," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-27, May.
  • Handle: RePEc:plo:pone00:0251582
    DOI: 10.1371/journal.pone.0251582
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251582
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251582&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0251582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    2. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    3. Jenn, Alan, 2019. "Electrifying Ride-Sharing: Transitioning to a Cleaner Future," Institute of Transportation Studies, Working Paper Series qt12s554kd, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Tai-Yu & Faye, Sébastien, 2022. "Multistep electric vehicle charging station occupancy prediction using hybrid LSTM neural networks," Energy, Elsevier, vol. 244(PB).
    2. Ijaz Ahmed & Um-E-Habiba Alvi & Abdul Basit & Tayyaba Khursheed & Alwena Alvi & Keum-Shik Hong & Muhammad Rehan, 2022. "A novel hybrid soft computing optimization framework for dynamic economic dispatch problem of complex non-convex contiguous constrained machines," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-32, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    3. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    4. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    5. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    6. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    7. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    8. Zhenya Ji & Xueliang Huang & Changfu Xu & Houtao Sun, 2016. "Accelerated Model Predictive Control for Electric Vehicle Integrated Microgrid Energy Management: A Hybrid Robust and Stochastic Approach," Energies, MDPI, vol. 9(11), pages 1-18, November.
    9. Topi Rasku & Juha Kiviluoma, 2018. "A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System," Energies, MDPI, vol. 12(1), pages 1-27, December.
    10. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    11. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    13. Poyrazoglu, Gokturk & Coban, Elvin, 2021. "A stochastic value estimation tool for electric vehicle charging points," Energy, Elsevier, vol. 227(C).
    14. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    15. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    16. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    17. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    18. Raveendran, Visal & Alvarez-Bel, Carlos & Nair, Manjula G., 2020. "Assessing the ancillary service potential of electric vehicles to support renewable energy integration in touristic islands: A case study from Balearic island of Menorca," Renewable Energy, Elsevier, vol. 161(C), pages 495-509.
    19. Cheng Wang & Zhou Gao & Peng Yang & Zhenpo Wang & Zhiheng Li, 2021. "Electric Vehicle Charging Facility Planning Based on Flow Demand—A Case Study," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    20. Alice Vasconcelos Nobre & Caio Cézar Rodrigues Oliveira & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Gil Eduardo Guimarães & Rosley Anholon & Vitor William Batista Martins, 2022. "Analysis of Decision Parameters for Route Plans and Their Importance for Sustainability: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(2), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0251582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.