IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0250970.html
   My bibliography  Save this article

Data-driven model reduction of agent-based systems using the Koopman generator

Author

Listed:
  • Jan-Hendrik Niemann
  • Stefan Klus
  • Christof Schütte

Abstract

The dynamical behavior of social systems can be described by agent-based models. Although single agents follow easily explainable rules, complex time-evolving patterns emerge due to their interaction. The simulation and analysis of such agent-based models, however, is often prohibitively time-consuming if the number of agents is large. In this paper, we show how Koopman operator theory can be used to derive reduced models of agent-based systems using only simulation data. Our goal is to learn coarse-grained models and to represent the reduced dynamics by ordinary or stochastic differential equations. The new variables are, for instance, aggregated state variables of the agent-based model, modeling the collective behavior of larger groups or the entire population. Using benchmark problems with known coarse-grained models, we demonstrate that the obtained reduced systems are in good agreement with the analytical results, provided that the numbers of agents is sufficiently large.

Suggested Citation

  • Jan-Hendrik Niemann & Stefan Klus & Christof Schütte, 2021. "Data-driven model reduction of agent-based systems using the Koopman generator," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-23, May.
  • Handle: RePEc:plo:pone00:0250970
    DOI: 10.1371/journal.pone.0250970
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250970
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0250970&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0250970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zlatko Drmač & Igor Mezić & Ryan Mohr, 2021. "Identification of Nonlinear Systems Using the Infinitesimal Generator of the Koopman Semigroup—A Numerical Implementation of the Mauroy–Goncalves Method," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    2. Lücke, Marvin & Heitzig, Jobst & Koltai, Péter & Molkenthin, Nora & Winkelmann, Stefanie, 2023. "Large population limits of Markov processes on random networks," Stochastic Processes and their Applications, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    3. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    4. Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
    5. Lea Sonderegger-Wakolbinger & Christian Stummer, 2015. "An agent-based simulation of customer multi-channel choice behavior," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 459-477, June.
    6. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    7. Xiong, Hang & Payne, Diane & Kinsella, Stephen, 2016. "Peer effects in the diffusion of innovations: Theory and simulation," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 63(C), pages 1-13.
    8. Paolo Pellizzari & Elena Sartori & Marco Tolotti, 2015. "Trade-In Programs in the Context of Technological Innovation with Herding," Lecture Notes in Economics and Mathematical Systems, in: Frédéric Amblard & Francisco J. Miguel & Adrien Blanchet & Benoit Gaudou (ed.), Advances in Artificial Economics, edition 127, pages 219-230, Springer.
    9. Christian Stummer & Dennis Kundisch & Reinhold Decker, 2018. "Platform Launch Strategies," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(2), pages 167-173, April.
    10. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    11. Lei Xu & Ronggui Ding & Lei Wang, 2022. "How to facilitate knowledge diffusion in collaborative innovation projects by adjusting network density and project roles," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1353-1379, March.
    12. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    13. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    15. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    16. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    17. Hang Xiong & Puqing Wang & Georgiy Bobashev, 2018. "Multiple peer effects in the diffusion of innovations on social networks: a simulation study," Journal of Innovation and Entrepreneurship, Springer, vol. 7(1), pages 1-18, December.
    18. Xenikos, D.G. & Constantoudis, V., 2023. "Weibull dynamics and power-law diffusion of epidemics in small world 2D networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    19. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    20. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    21. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0250970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.