Exploring the Development of Research, Technology and Business of Machine Tool Domain in New-Generation Information Technology Environment Based on Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yawei Wang & Frauke Urban & Yuan Zhou & Luyi Chen, 2018. "Comparing the Technology Trajectories of Solar PV and Solar Water Heaters in China: Using a Patent Lens," Sustainability, MDPI, vol. 10(11), pages 1-29, November.
- Leah G. Nichols, 2014. "A topic model approach to measuring interdisciplinarity at the National Science Foundation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 741-754, September.
- Moustafa Gadalla & Deyi Xue, 2017. "Recent advances in research on reconfigurable machine tools: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1440-1454, March.
- Giacomo Marzi & Marina Dabić & Tugrul Daim & Edwin Garces, 2017. "Product and process innovation in manufacturing firms: a 30-year bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 673-704, November.
- Xu, Guannan & Wu, Yuchen & Minshall, Tim & Zhou, Yuan, 2018. "Exploring innovation ecosystems across science, technology, and business: A case of 3D printing in China," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 208-221.
- Yuan Zhou & Meijuan Pan & Frauke Urban, 2018. "Comparing the International Knowledge Flow of China’s Wind and Solar Photovoltaic (PV) Industries: Patent Analysis and Implications for Sustainable Development," Sustainability, MDPI, vol. 10(6), pages 1-34, June.
- Liu, Haiyan & Yu, Jianning & Xu, Jian & Fan, Yu & Bao, Xiaojun, 2007. "Identification of key oil refining technologies for China National Petroleum Co. (CNPC)," Energy Policy, Elsevier, vol. 35(4), pages 2635-2647, April.
- Jiang, Hanchen & Qiang, Maoshan & Lin, Peng, 2016. "A topic modeling based bibliometric exploration of hydropower research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 226-237.
- Nordensvard, Johan & Zhou, Yuan & Zhang, Xiao, 2018. "Innovation core, innovation semi-periphery and technology transfer: The case of wind energy patents," Energy Policy, Elsevier, vol. 120(C), pages 213-227.
- Kong, Dejing & Zhou, Yuan & Liu, Yufei & Xue, Lan, 2017. "Using the data mining method to assess the innovation gap: A case of industrial robotics in a catching-up country," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 80-97.
- Hyun-Lim Yang & Tai-Woo Chang & Yerim Choi, 2018. "Exploring the Research Trend of Smart Factory with Topic Modeling," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- MARINCEAN Dan Andrei, 2020. "Digital Economy And The Dsm," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(2), pages 86-97, December.
- Taeyeoun Roh & Yujin Jeong & Hyejin Jang & Byungun Yoon, 2019. "Technology opportunity discovery by structuring user needs based on natural language processing and machine learning," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-27, October.
- Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
- Arelys López-Concepción & Ana Gil-Lacruz & Isabel Saz-Gil & Víctor Bazán-Monasterio, 2022. "Social Well-Being for a Sustainable Future: The Influence of Trust in Big Business and Banks on Perceptions of Technological Development from a Life Satisfaction Perspective in Latin America," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
- Yawei Wang & Frauke Urban & Yuan Zhou & Luyi Chen, 2018. "Comparing the Technology Trajectories of Solar PV and Solar Water Heaters in China: Using a Patent Lens," Sustainability, MDPI, vol. 10(11), pages 1-29, November.
- Huailan Liu & Zhiwang Chen & Jie Tang & Yuan Zhou & Sheng Liu, 2020. "Mapping the technology evolution path: a novel model for dynamic topic detection and tracking," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2043-2090, December.
- Guannan Xu & Weijie Hu & Yuanyuan Qiao & Yuan Zhou, 2020. "Mapping an innovation ecosystem using network clustering and community identification: a multi-layered framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2057-2081, September.
- Prokop, Viktor & Hajek, Petr & Stejskal, Jan, 2021. "Configuration Paths to Efficient National Innovation Ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
- Yuan Zhou & Heng Lin & Yufei Liu & Wei Ding, 2019. "A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 167-185, July.
- Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 2020.
"Sport entrepreneurship: A synthesis of existing literature and future perspectives,"
International Entrepreneurship and Management Journal, Springer, vol. 16(3), pages 795-826, September.
- Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 0. "Sport entrepreneurship: A synthesis of existing literature and future perspectives," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-32.
- Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
- Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
- Zuo, Zhiya & Zhao, Kang, 2018. "The more multidisciplinary the better? – The prevalence and interdisciplinarity of research collaborations in multidisciplinary institutions," Journal of Informetrics, Elsevier, vol. 12(3), pages 736-756.
- Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
- Ruxu Sheng & Rong Zhou & Ying Zhang & Zidi Wang, 2021. "Green Investment Changes in China: A Shift-Share Analysis," IJERPH, MDPI, vol. 18(12), pages 1-15, June.
- Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
- Afful-Dadzie, Eric & Afful-Dadzie, Anthony, 2017. "Liberation of public data: Exploring central themes in open government data and freedom of information research," International Journal of Information Management, Elsevier, vol. 37(6), pages 664-672.
- Dragana Radicic & Geoffrey Pugh & David Douglas, 2020. "Promoting cooperation in innovation ecosystems: evidence from European traditional manufacturing SMEs," Small Business Economics, Springer, vol. 54(1), pages 257-283, January.
- Walls, W.D., 2010.
"Petroleum refining industry in China,"
Energy Policy, Elsevier, vol. 38(5), pages 2110-2115, May.
- W. D. Walls, "undated". "Petroleum refining industry in China," Working Papers 2014-61, Department of Economics, University of Calgary, revised 23 Sep 2014.
- Debnath, R. & Darby, S. & Bardhan, R. & Mohaddes, K. & Sunikka-Blank, M., 2020.
"Grounded reality meets machine learning: A deep-narrative analysis framework for energy policy research,"
Cambridge Working Papers in Economics
2062, Faculty of Economics, University of Cambridge.
- Ramit Debnath & Sarah Darby & Ronita Bardhan & Kamiar Mohaddes & Minna Sunikka-Blank, 2020. "Grounded reality meets machine learning: A deep-narrative analysis framework for energy policy research," Working Papers EPRG2019, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- repec:oup:rseval:v:32:y:2024:i:2:p:213-227. is not listed on IDEAS
- Ran Xu & Navid Ghaffarzadegan, 2018. "Neuroscience bridging scientific disciplines in health: Who builds the bridge, who pays for it?," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 1183-1204, November.
- Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
- Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023.
"Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams,"
Technological Forecasting and Social Change, Elsevier, vol. 193(C).
- Josip Marić & M. Opazo-Basáez & B. Vlačić & M. Dabić, 2023. "Innovation Management of Three-Dimensional Printing (3DP) Technology: Disclosing Insights from Existing Literature and Determining Future Research Streams," Post-Print hal-04435561, HAL.
More about this item
Keywords
development analysis; machine tool; multi-source; machine learning; topic model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3316-:d:240153. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.