IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0242285.html
   My bibliography  Save this article

Information theory inspired optimization algorithm for efficient service orchestration in distributed systems

Author

Listed:
  • Matheus Sant’Ana Lima

Abstract

Distributed Systems architectures are becoming the standard computational model for processing and transportation of information, especially for Cloud Computing environments. The increase in demand for application processing and data management from enterprise and end-user workloads continues to move from a single-node client-server architecture to a distributed multitier design where data processing and transmission are segregated. Software development must considerer the orchestration required to provision its core components in order to deploy the services efficiently in many independent, loosely coupled—physically and virtually interconnected—data centers spread geographically, across the globe. This network routing challenge can be modeled as a variation of the Travelling Salesman Problem (TSP). This paper proposes a new optimization algorithm for optimum route selection using Algorithmic Information Theory. The Kelly criterion for a Shannon-Bernoulli process is used to generate a reliable quantitative algorithm to find a near optimal solution tour. The algorithm is then verified by comparing the results with benchmark heuristic solutions in 3 test cases. A statistical analysis is designed to measure the significance of the results between the algorithms and the entropy function can be derived from the distribution. The tested results shown an improvement in the solution quality by producing routes with smaller length and time requirements. The quality of the results proves the flexibility of the proposed algorithm for problems with different complexities without relying in nature-inspired models such as Genetic Algorithms, Ant Colony, Cross Entropy, Neural Networks, 2opt and Simulated Annealing. The proposed algorithm can be used by applications to deploy services across large cluster of nodes by making better decision in the route design. The findings in this paper unifies critical areas in Computer Science, Mathematics and Statistics that many researchers have not explored and provided a new interpretation that advances the understanding of the role of entropy in decision problems encoded in Turing Machines.

Suggested Citation

  • Matheus Sant’Ana Lima, 2021. "Information theory inspired optimization algorithm for efficient service orchestration in distributed systems," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-59, January.
  • Handle: RePEc:plo:pone00:0242285
    DOI: 10.1371/journal.pone.0242285
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242285
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0242285&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0242285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    2. Tarantilis, C. D. & Diakoulaki, D. & Kiranoudis, C. T., 2004. "Combination of geographical information system and efficient routing algorithms for real life distribution operations," European Journal of Operational Research, Elsevier, vol. 152(2), pages 437-453, January.
    3. R Torres-Velázquez & V Estivill-Castro, 2004. "Local search for Hamiltonian Path with applications to clustering visitation paths," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 737-748, July.
    4. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    5. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    6. Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    7. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    8. Ozgur, C. O. & Brown, J. R., 1995. "A two-stage traveling salesman procedure for the single machine sequence-dependent scheduling problem," Omega, Elsevier, vol. 23(2), pages 205-219, April.
    9. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    10. CASTRO, Marco & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter & GOOS, Peter, 2012. "A simple GRASP+VND for the travelling salesperson problem with hotel selection," Working Papers 2012024, University of Antwerp, Faculty of Business and Economics.
    11. Eric Bonabeau & Florian Henaux & Sylvain Gu'erin & Dominique Snyers & Pascale Kuntz & Guy Theraulaz, 1998. "Routing in Telecommunications Networks with ``Smart'' Ant-Like Agents," Working Papers 98-01-003, Santa Fe Institute.
    12. Dimitris Bertsimas & Patrick Jaillet, & Sébastien Martin, 2019. "Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications," Operations Research, INFORMS, vol. 67(1), pages 143-162, January.
    13. Alain Hertz & Gilbert Laporte & Pierrette Nanchen Hugo, 1999. "Improvement Procedures for the Undirected Rural Postman Problem," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 53-62, February.
    14. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Christos T., 2009. "A Guided Tabu Search for the Vehicle Routing Problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 195(3), pages 729-743, June.
    15. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "Erratum: A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1423-1430, July.
    16. Krzysztof Ostrowski & Joanna Karbowska-Chilinska & Jolanta Koszelew & Pawel Zabielski, 2017. "Evolution-inspired local improvement algorithm solving orienteering problem," Annals of Operations Research, Springer, vol. 253(1), pages 519-543, June.
    17. Du, Timon C. & Li, Eldon Y. & Chou, Defrose, 2005. "Dynamic vehicle routing for online B2C delivery," Omega, Elsevier, vol. 33(1), pages 33-45, February.
    18. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    19. Castillo, Cristian & Alvarez-Palau, Eduard J. & Calvet, Laura & Panadero, Javier & Viu-Roig, Marta & Serena-Latre, Anna & Juan, Angel A., 2024. "Home healthcare in Spanish rural areas: Applying vehicle routing algorithms to health transport management," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    20. Sam Heshmati & Jannes Verstichel & Eline Esprit & Greet Vanden Berghe, 2019. "Alternative e-commerce delivery policies," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 217-248, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0242285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.