IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0240238.html
   My bibliography  Save this article

Regional response of grassland productivity to changing environment conditions influenced by limiting factors

Author

Listed:
  • Qiuyue Li
  • Jihua Hou
  • Pu Yan
  • Li Xu
  • Zhi Chen
  • Hao Yang
  • Nianpeng He

Abstract

Regional differences and regulatory mechanisms of vegetation productivity response to changing environmental conditions constitute a core issue in macroecological researches. To verify the main limiting factors of different macrosystems [temperature-limited Tibetan Plateau (TP), precipitation-limited Mongolian Plateau (MP), and nutrient-limited Loess Plateau (LP)], we conducted a comparative survey of the east-west grassland transects on the three plateaus and explored the factors limiting regional productivity and their underlying mechanisms. The results showed that aboveground net primary productivity (ANPP) of LP (109.10 ± 16.76 g m−2 yr−1) was significantly higher than that of MP (66.71 ± 11.11 g m−2 yr−1) and TP (57.02 ± 10.59 g m−2 yr−1). The response rate of ANPP with environmental changes was different among different plateaus, being closely related to the main limiting factors. On MP, this was precipitation, on LP it was temperature and nutrients, and on TP, it was non-specific, reflecting restriction by the extremely low temperature. After autocorrelation screening of environmental factors, different regions exhibited different productivity response mechanisms. MP was mainly influenced by temperature and precipitation, LP was influenced by temperature and nutrient, and TP was influenced by nutrient, reflecting the modifying effect of the main limiting factors. The effect of each regional environment on ANPP was 72.56% on average and only 27.18% after simple regional integration. The regional model could optimize the simulation error of the integrated model, and the relative deviations in MP, LP, and TP were reduced by 31.76%, 17.22%, and 2.23%, respectively. These findings indicate that the grasslands on the three plateaus may have different or even the opposite mechanisms to control productivity.

Suggested Citation

  • Qiuyue Li & Jihua Hou & Pu Yan & Li Xu & Zhi Chen & Hao Yang & Nianpeng He, 2020. "Regional response of grassland productivity to changing environment conditions influenced by limiting factors," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
  • Handle: RePEc:plo:pone00:0240238
    DOI: 10.1371/journal.pone.0240238
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240238
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0240238&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0240238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miao, Lijuan & Müller, Daniel & Cui, Xuefeng & Ma, Meihong, 2017. "Changes in vegetation phenology on the Mongolian Plateau and their climatic determinants," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(12), pages 1-13.
    2. Haijun Deng & N. C. Pepin & Qun Liu & Yaning Chen, 2018. "Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016," Climatic Change, Springer, vol. 151(3), pages 379-393, December.
    3. Xiaoming Feng & Bojie Fu & Shilong Piao & Shuai Wang & Philippe Ciais & Zhenzhong Zeng & Yihe Lü & Yuan Zeng & Yue Li & Xiaohui Jiang & Bingfang Wu, 2016. "Revegetation in China’s Loess Plateau is approaching sustainable water resource limits," Nature Climate Change, Nature, vol. 6(11), pages 1019-1022, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    3. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    6. Kai Huang & Rui Wang & Weixiong Wu & Peilin Wu & Haoxiang Li & Linglin Zeng & Jinhua Shao & Haichen Liu & Tao Xu, 2022. "Trend of Vegetation and Environmental Factors and Their Feedback in the Karst Regions of Southwestern China," Sustainability, MDPI, vol. 14(23), pages 1-27, November.
    7. Li, Sijia & Wang, Jinman & Zhang, Min & Tang, Qian, 2021. "Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020," Resources Policy, Elsevier, vol. 74(C).
    8. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    9. Miao, Lijuan & Sun, Zhanli & Ren, Yanjun & Schierhorn, Florian & Müller, Daniel, 2021. "Grassland greening on the Mongolian Plateau despite higher grazing intensity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 32(2), pages 792-802.
    10. Tao, Ze & Wang, Xia & Siddique, Kadambot H.M., 2023. "Evaluating the bias effects of rooting depth and cryogenic vacuum extraction to quantify root water uptake patterns in deep-rooted apple trees," Agricultural Water Management, Elsevier, vol. 289(C).
    11. M. K. Dhillon & P. M. Rafi-Ul-Shan & H. Amar & F. Sher & S. Ahmed, 2023. "Flexible Green Supply Chain Management in Emerging Economies: A Systematic Literature Review," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(1), pages 1-28, March.
    12. Li, Han & Si, Bing Cheng & Zhang, Zhiqiang & Miao, Changhong, 2022. "Deep soil water storage and drainage following conversion of deep rooted to shallow rooted vegetation," Agricultural Water Management, Elsevier, vol. 261(C).
    13. Liu, Bingxia & Jia, Xiaoxu & Shao, Ming'an & Jia, Yuhua, 2022. "Assessing soil water recovery after converting planted shrubs and grass to natural grass in the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 264(C).
    14. Saowanee Wijitkosum, 2020. "Reducing Vulnerability to Desertification by Using the Spatial Measures in a Degraded Area in Thailand," Land, MDPI, vol. 9(2), pages 1-20, February.
    15. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Feng Chen & Hadad Martín & Xiaoen Zhao & Fidel Roig & Heli Zhang & Shijie Wang & Weipeng Yue & Youping Chen, 2022. "Abnormally low precipitation-induced ecological imbalance contributed to the fall of the Ming Dynasty: new evidence from tree rings," Climatic Change, Springer, vol. 173(1), pages 1-16, July.
    17. Yang, Yi & Li, Bingbing & Shi, Peijun & Li, Zhi, 2023. "Assessing spatiotemporally varied ecohydrological effects of apple orchards based on regional-scale estimation of tree distribution and ages," Agricultural Water Management, Elsevier, vol. 287(C).
    18. Wu, Bingfang & Fu, Zhijun & Fu, Bojie & Yan, Changzhen & Zeng, Hongwei & Zhao, Wenwu, 2024. "Dynamics of land cover changes and driving forces in China’s drylands since the 1970 s," Land Use Policy, Elsevier, vol. 140(C).
    19. Hongyi Li & Renbin He & Jie Hu & Yue Zhou & Modian Xie & Wanming Deng & Junjie Wang & Wanru Zhao & Shuangshuang Zhang & Yefeng Jiang & Zongzheng Liang & Lan Luo & Bifeng Hu & Zhou Shi, 2024. "Identifying conservation priority zones and their driving factors regarding regional ecosystem services," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20963-20985, August.
    20. Fei Wang & Yaning Chen & Zhi Li & Gonghuan Fang & Yupeng Li & Zhenhua Xia, 2019. "Assessment of the Irrigation Water Requirement and Water Supply Risk in the Tarim River Basin, Northwest China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0240238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.